Please wait a minute...
金属学报  2009, Vol. 45 Issue (11): 1330-1335    
  论文 本期目录 | 过刊浏览 |
高频电磁场对15CrMo连铸坯表面质量和等轴晶率的影响机理
许秀杰1); 邓安元1); 王恩刚1); 张林涛1);  张永杰2); 赫冀成1)
1) 东北大学材料电磁过程研究教育部重点实验室; 沈阳 110004
2) 上海宝山钢铁股份有限公司; 上海 201900
EFFECT MECHANISM OF HIGH FREQUENCY ELECTROMAGNETIC FIELD ON THE SURFACE QUALITY AND EQUIAXED CRYSTAL RATIO OF 15CrMo BILLET
XU Xiujie1);    DENG Anyuan1);   WANG Engang1);   ZHANG Lintao1);    ZHANG Yongjie2);   HE Jicheng1)
1) Key Laboratory of Electromagnetic Processing of Materials; Ministry of Education; Northeastern University; Shenyang 110004\par
2) Shanghai Baoshan Iron & Steel Co.; Ltd.; Shanghai 201900
引用本文:

许秀杰 邓安元 王恩刚 张林涛 张永杰 赫冀成. 高频电磁场对15CrMo连铸坯表面质量和等轴晶率的影响机理[J]. 金属学报, 2009, 45(11): 1330-1335.
, . EFFECT MECHANISM OF HIGH FREQUENCY ELECTROMAGNETIC FIELD ON THE SURFACE QUALITY AND EQUIAXED CRYSTAL RATIO OF 15CrMo BILLET[J]. Acta Metall Sin, 2009, 45(11): 1330-1335.

全文: PDF(1194 KB)  
摘要: 

采用小线圈法对结晶器内的磁场分布进行了测量, 并对结晶器内磁场、电磁力和钢液流速分布进行了数值模拟. 在实验室连铸机上进行了合金结构钢15CrMo的连铸实验, 对连铸坯表面形貌进行了观察与分析. 提出了高频电磁场对连铸坯质量影响的机理: 施加高频电磁场后, 保护渣通道拓宽, 铸坯与结晶器壁间的渣道动压减小, 有效地抑制了铸坯表面振痕的产生; 受电磁场Joule热以及保护渣热增加的影响, 已结晶固相的温度梯度减小, 柱状晶生长受到抑制. 此外, 实验测量和数值模拟结果表明, 由于磁场在拉坯方向分布不均匀, 在弯月面区域形成上、下2个方向相反的涡流, 钢液环流造成固/液界面前沿液相的温度梯度减小, 有利于形成成分过冷而获得发达的等轴晶组织.

关键词 连铸结晶器振痕保护渣压力等轴晶成分过冷    
Abstract

An induced coil surrounding a segmented mold used in soft--contact electromagnetic casting
(soft-contact EMC) was used to produce a high frequency magnetic field for reducing ferrostatic pressure
between the mold and melt. The distribution of magnetic field in the mold was examined using a magnetic
probe of the induction coil type. Then mathematical model was developed to study the distributions of
magnetic field, electromagnetic force and flowing velocity of molten steel in the mold. Finally, continuous casting
experiments were conducted with alloy constructional steel 15CrMo in the laboratory caster. The surface
morphologies and macrostructure were examined and analyzed. Based on the comprehension of the
distributions of magnetic field, electromagnetic force and flowing velocity of molten steel in the mold through
measurements and numerical simulation, the effects  of electromagnetic field were systematically investigated.
The results indicate that when the electromagnetic field was applied in the initially solidified area,
the mold flux consumption was increased dramatically. As a result, the surface quality of continuously
cast billets is greatly improved, for example, oscillation marks disappeared due to the decrease of flux pressure. Moreover, the
growth of columnar grains is suppressed for two main reasons. The first one is that the mold near meniscus is
heated by Joule heat generated by the high frequency electromagnetic field. The other one is that the thermal
resistance between mold and the solidified shell is increased as the increase of mold flux thickness.
Inhomogeneous distributions of magnetic field in the mold along the casting direction were confirmed both by
measurement and numerical simulation. And the Lorentz force on the molten steel along the casting direction is
uneven likewise. Under the drive of Lorentz force, two counter-rotational vortices are formed below the
meniscus. Moreover, the temperature gradient in front of the solid/liquid interface is decreased as a result of the
circulation of liquid steel. Therefore, composition supercooling is easily obtained in the liquid core, which is
helpful to the growth of equiaxed crystals.

Key wordscontinuous casting    mold    oscillation mark    mold flux pressure    equiaxed grain    composition supercooling
收稿日期: 2009-04-20     
ZTFLH: 

TF777

 
基金资助:

国家高技术研究发展计划项目2001AA337040, 国家自然科学基金项目50604005和50834009资助

作者简介: 许秀杰, 男, 1981年生, 博士生

[1] Viv`es C. Metall Trans, 1989; 20B: 623
[2] Asai S. Electromagnetic Processing of Materials. Tokyo: ISIJ, 1989: 51

(浅井滋生. 电磁気を利用したマテリアルプロセッシング. 东京: 日本铁钢协会编, 1989: 51)

[3] Miyoshino I, Takeuchi E, Yano H, Sakane J, Saeki T, Kajioka H. ISIJ Int, 1989; 29: 1040
[4] Kim H, Park J, Jeong H, Kim J. ISIJ Int, 2002; 42: 171
[5] Li T J, Sassa K, Asai S. ISIJ Int, 1996; 36: 410
[6] Toh T, Takeuchi E, Hojo M, Kawai H, Matsumura S. ISIJ Int, 1997; 37: 1112
[7] Nakata H, Inoue T, Mori H, Ayata K, Murakami T, Kominami T. ISIJ Int, 2002; 42: 264
[8] Park J, Jeong H, Kim H, Kim J. ISIJ Int, 2002; 42: 385
[9] Park J, Kim H, Jeong H, Kim G, Cho M J, Chung J, Yoon M, Kim K R, Choi J. ISIJ Int, 2003; 43: 813
[10] Zhou Y M, Zhang Y J. Baosteel Technol, 2003; (1): 1
(周月明, 张永杰. 宝钢技术, 2003; (1): 1)
[11] Xu X J, Deng A Y, Wang E G, Zhang L T, Zhang X W, Zhang Y J, He J C. Acta Metall Sin, 2009; 45: 464
(许秀杰, 邓安元, 王恩刚, 张林涛, 张兴武, 张永杰, 赫冀成. 金属学报, 2009; 45: 464)

[12] Cai K K, Cheng S F. Fundamentals and Technology of Steel Continuous Casting. Beijing: Metallurgical Industry Press, 1994: 86
(蔡开科, 程士富. 连续铸钢原理与工艺. 北京: 冶金工业出版社, 1994: 86)

[13] Yu G W, Jia G L, Wang E G, He J C, Zhang Y J, Chen Z P. Acta Metall Sin, 2002; 38: 208
(于光伟, 贾光霖, 王恩刚, 赫冀成, 张永杰, 陈兆平. 金属学报, 2002; 38: 208)

[14] Lei Z S, Ren Z M, Yan Y G, Deng K. Acta Metall Sin, 2004; 40: 550
(雷作胜, 任忠鸣, 阎勇刚, 邓 \ \ 康. 金属学报, 2004; 40: 550)
[15] Takeuchi E, Brimacombe J K. Metall Trans, 1984; 15B : 493
[16] Thomas B G, Zhang L. ISIJ Int, 2001; 41: 1181
[17] Winegard W C, Chalmers B. Trans Am Soc Met, 1954; 46: 1214
[18] Jackson K A, Hunt J D, Uhlman D R, Seward T P. TMS–AIME, 1966; 236: 149
[19] Southin R T. TMS–AIME, 1976; 239: 220
[20] Ohno A. The Solidification of Metals. Chijin: Shokan Co., Ltd., 1976: 50
[21] Zhang Y J. PHD Thesis, Northeastern University, Shenyang, 2005
(张永杰. 东北大学博士学位论文, 沈阳, 2005)
[22] Deng A Y, Wang E G, He J C. J Iron Steel Res, 2002; 14: 6
(邓安元, 王恩刚, 赫冀成. 钢铁研究学报, 2002; 14: 6)
[23] Ren Z, Dong H, Deng K, Jiong G. ISIJ Int, 2001; 41: 983
[24] Cui Z Y, Qin Y C. Metal Science and Heat Treatment. Beijing: China Machine Press, 2007: 82
(崔忠圻, 覃耀春. 金属学与热处理. 北京: 机械工业出版社, 2007: 82)

[25] Hu H Q. Metal Solidification Theory. Beijing: China Machine Press, 2007: 120
(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2007: 120)

[1] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[2] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[3] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[4] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[5] 郭中傲, 彭治强, 柳前, 侯自兵. 高碳钢连铸坯大区域C元素分布不均匀度[J]. 金属学报, 2021, 57(12): 1595-1606.
[6] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[7] 蔡来强, 王旭东, 姚曼, 刘宇. 连铸圆坯非均匀传热/凝固行为的无网格计算方法[J]. 金属学报, 2020, 56(8): 1165-1174.
[8] 任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
[9] 李亚强, 刘建华, 邓振强, 仇圣桃, 张佩, 郑桂芸. 15CrMoG钢包晶凝固特征与机制[J]. 金属学报, 2020, 56(10): 1335-1342.
[10] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[11] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[12] 郭军力, 文光华, 符姣姣, 唐萍, 侯自兵, 谷少鹏. 冷却速率对包晶钢凝固过程中包晶转变收缩的影响[J]. 金属学报, 2019, 55(10): 1311-1318.
[13] 侯自兵, 徐瑞, 常毅, 曹江海, 文光华, 唐萍. 高碳钢连铸方坯拉坯方向偏析C元素分布的时间序列波动特征[J]. 金属学报, 2018, 54(6): 851-858.
[14] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[15] 龚永勇, 程书敏, 钟玉义, 张云虎, 翟启杰. 脉冲磁致振荡凝固技术[J]. 金属学报, 2018, 54(5): 757-765.