Please wait a minute...
金属学报  2009, Vol. 45 Issue (10): 1267-1271    
  论文 本期目录 | 过刊浏览 |
气体雾化制备Fe-Ga合金粉末的微结构及磁致伸缩性能
高学绪; 李纪恒; 朱洁; 包小倩; 贾俊成; 张茂才
北京科技大学新金属材料国家重点实验室; 北京 100083
MICROSTRUCTURE AND MAGNETOSTRICTION OF Fe-Ga POWDERS PREPARED BY GAS ATOMIZATION
GAO Xuexu; LI Jiheng; ZHU Jie; BAO Xiaoqian; JIA Juncheng; ZHANG Maocai
State Key Laboratory for Advanced Metals and Materials; University of Science and Technology Beijing; Beijing 100083
引用本文:

高学绪 李纪恒 朱洁 包小倩 贾俊成 张茂才 . 气体雾化制备Fe-Ga合金粉末的微结构及磁致伸缩性能[J]. 金属学报, 2009, 45(10): 1267-1271.
, , , , . MICROSTRUCTURE AND MAGNETOSTRICTION OF Fe-Ga POWDERS PREPARED BY GAS ATOMIZATION[J]. Acta Metall Sin, 2009, 45(10): 1267-1271.

全文: PDF(1390 KB)  
摘要: 

为改善Fe--Ga合金的高频特性, 采用黏结工艺制备Fe-Ga磁致伸缩复合材料. 探索采用气体雾化法制备Fe81Ga19合金粉末, 利用EDS, SEM, XRD和DTA研究粉末颗粒的基本特性. 结果表明, 雾化粉末颗粒球形度好, 成分与目标成分接近, 大部分颗粒内部为多晶体, 颗粒以A2相为主, 且含有少量DO3相; 经800 ℃热处理后, 颗粒中有大量L12相析出, 保温8 h, 炉冷样品含有大量单晶颗粒. 利用Fe81Ga19合金粉末和黏结剂制备黏结复合材料, 粒径<25 μm的热处理粉末颗粒制备黏结样品的饱和磁致伸缩值最大, 为6.4×10-5.

关键词 Fe-Ga合金 气体雾化 粉末黏结 磁致伸缩    
Abstract

The magnetostrictive composite material such as Terfenol–D, is composed of magnetostrictive particles dispersed within a polymer matrix, which is used to bind these particles to a relatively tough material, and the binder creates an insulating layer between the particles which increases the receptivity and reduces eddy current losses at high frequencies operation. Hong et al. reported that the maximum magnetostriction of 5.4×10−5 was obtained in a composite made by mixing the spherical Fe–Ga particles prepared by spark erosion in liquid Ar with epoxy of 48% volume fraction and curing in a magnetic field. Gaudet et al. investigated firstly the Fe–Ga powders prepared by mechanical alloying. Their results suggested that a disordered bcc A2 phase with no indication of any ordered DO3 phase was observed in these powders. Unfortunately, in their report, they also did not describe how to bond powders into a composite and how its magnetostrictive performance was. In present study, the spherical Fe–Ga particles were prepared by gas atomization and their microstructures were investigated by XRD, DTA, SEM and EDS. The results demonstrate that the Ga concentration of gas–atomized particles is near the nominal composition of Fe81Ga19 and most of particles are polycrystallne mainly composed of A2 phse and a small amount of ordered DO3 phase. It is found that L12 phase appeared in the Fe81Ga19 annealed powders is detimental to improvement of magnetostriction. However, many single crystals were obtained due to crystallization during annealing, which is beneficial to increasing the magnetostriction. The bonded magnetostrictive composite was prepareby magneticallaligning compression molding Fe81Ga19 powders and epoy. The maximum saturation magnetostriction of 6.4×10−5 is obtained in the composite containing annealed powdes.

Key wordsFe–Ga alloy    gas atomization    powder    magnetostricton
收稿日期: 2009-02-16     
ZTFLH: 

TG132.27

 
基金资助:

国家自然科学基金资助项目50775015

作者简介: 高学绪, 男, 1969年生, 副研究员

[1] Guruswamy S, Srisukhumbowornchai N, Clark A E, Restorff J B, Wun–Fogle M. Scr Mater, 2000; 43: 239
[2] Clark A E, Wun–Fogle M, Restorff J B, Thomas A, Lograsso T A. Mater Trans, 2002; 43: 881
[3] Datta S, Huang M, Raim J, Lograsso T A. Mater Sci Eng, 2006; A435–436: 221
[4] Zhang M C, Gao X X, Jiang H L, Qiao Y, Zhou S Z. J Alloys Compd, 2007; 431: 42
[5] Han Z Y, Zhang M C, Gao X X, Tang H J, Zhou S Z. Prog Nat Sci, 2007; 14: 638
[6] McGary P D, Tan L, Zou J, Stadler B J H, Downey P R, Flatau A B. J Appl Phys, 2006; 99: 08B310
[7] Downey P R, Flatau A B. In: Flatau A B ed., Proc SPIE, Vol. 5764, SPIE, Bellingham, WA, 2005: 120
[8] Mcgary P D, Stadler B J. J Appl Phys, 2005; 97: 10R503
[9] Hong J I, Solomon V C, Simth J, Parker F T, Summers E M, Berkowitz A E. Appl Phys Lett, 2006; 89: 142506
[10] Gaudet J M, Hatchard T D, Farrell S P, Dunlap R A. J Magn Magn Mater, 2008; 320: 821
[11] Srisukhumbowornchai N, Guruswamy S. J Appl Phys, 2002; 92: 5731
[12] Ikeda O, Kainuma R, Ohnuma I, Fukamichi K, Ishida K. J Alloys Compd, 2002; 347: 198
[13] Lograsso T A, Ross A R, Schlagel D L, Clark A E, Wun–Fogle M, J Alloys Compd, 2003; 350: 95
[14] Zhao X G, Mellores N, Kilcoyne S, Lord D, Henry P. J Appl Phys, 2008; 103: 07B320
[15] Gao F, Jiang C B, Liu J H, Xu H B. Acta Metall Sin, 2007; 43: 683
(高 芳, 蒋成保, 刘敬华, 徐惠彬. 金属学报, 2007; 43: 683)
[16] Wu R. J Appl Phys, 2002; 91: 7358
[17] Saito C, Furuya Y, Furuya T, Okazaki T, Matsuzaki T, Watanabe T. Mater Trans, 2004; 45: 93
[18] Takahashi T, Okazaki T, Furuya Y. Scr Mater, dio: 10.1016/j.scriptamat.2008.12.032

[1] 储双杰,杨勇杰,和正华,沙玉辉,左良. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算[J]. 金属学报, 2019, 55(3): 362-368.
[2] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[3] 刘印,刘铁,王强,王慧敏,王丽,赫冀成. 强磁场热处理对TbFe2和Tb0.27Dy0.73Fe1.95合金晶体取向、微观形貌和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(9): 1148-1152.
[4] 姚占全,赵增祺,江丽萍,郝宏波,吴双霞,张光睿,杨建东. 稀土Ce添加对Fe83Ga17合金微结构和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(1): 87-91.
[5] 李晓诚 丁雨田 胡勇. Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) 合金的微观组织与磁致伸缩性能[J]. 金属学报, 2012, 48(1): 11-15.
[6] 陈立彪 朱小溪 李川 刘敬华 蒋成保 徐惠彬. Fe81Ga19合金<001>取向单晶生长及磁致伸缩性能[J]. 金属学报, 2011, 47(2): 169-172.
[7] 崔跃 蒋成保 徐惠彬. Tb-Dy-Fe-Co合金本征磁致伸缩性能[J]. 金属学报, 2011, 47(2): 214-218.
[8] 王刚 郑卓 常立涛 徐磊 崔玉友 杨锐. TiAl预合金粉末的表征和后续致密化显微组织特点[J]. 金属学报, 2011, 47(10): 1263-1269.
[9] 张昌盛 马天宇 严密 裴永茂 高旭 . <110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金的磁机械阻尼特性[J]. 金属学报, 2009, 45(6): 749-753.
[10] 朱小溪 张天丽 蒋成保. Fe72.5Ga27.5磁致伸缩合金动态机电耦合系数K33[J]. 金属学报, 2009, 45(4): 455-459.
[11] 贾傲 张天丽 孟皓 蒋成保. 粘结巨磁致伸缩颗粒复合材料的磁致伸缩性能及涡流损耗[J]. 金属学报, 2009, 45(12): 1473-1478.
[12] 李纪恒; 高学绪; 朱洁; 张茂才; 何承先 . 轧制Fe-Ga合金的织构及磁致伸缩[J]. 金属学报, 2008, 44(9): 1031-1034 .
[13] 章愫; 刘敬华; 蒋成保; 徐惠彬 . 熔体快淬法制备Fe81Ga19磁致伸缩合金[J]. 金属学报, 2008, 44(3): 361-364 .
[14] 许云伟; 马天宇; 张晶晶; 严密 . 反铁磁Fe1-xMnx(0.30≤x≥0.55) 合金的磁致伸缩[J]. 金属学报, 2008, 44(10): 1235-1237 .
[15] 白夏冰; 马天宇; 蒋成保 . <110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金的磁机械耦合系数[J]. 金属学报, 2008, 44(10): 1231-1234 .