Please wait a minute...
金属学报  2009, Vol. 45 Issue (10): 1242-1248    
  论文 本期目录 | 过刊浏览 |
Inconel 718合金方坯粗轧加热过程晶粒长大模型
陈礼清;隋凤利;刘相华
东北大学轧制技术及连轧自动化国家重点实验室; 沈阳 110004
GRAIN GROWTH MODEL OF INCONEL 718 ALLOY FORGED SLAB IN REHEATING PROCESS PRIOR TO ROUGH ROLLING
CHEN Liqing; SUI Fengli; LIU Xianghua
State Key Laboratory of Rolling and Automation; Northeastern University; Shenyang 110004
引用本文:

陈礼清 隋凤利 刘相华. Inconel 718合金方坯粗轧加热过程晶粒长大模型[J]. 金属学报, 2009, 45(10): 1242-1248.
, , . GRAIN GROWTH MODEL OF INCONEL 718 ALLOY FORGED SLAB IN REHEATING PROCESS PRIOR TO ROUGH ROLLING[J]. Acta Metall Sin, 2009, 45(10): 1242-1248.

全文: PDF(4410 KB)  
摘要: 

以Inconel 718合金锻坯为研究对象, 在1173-1423 K的温度范围内, 研究了加热温度和时间对Inconel 718合金锻坯晶粒尺寸 变化的影响, 推导并验证了具有普适意义的适合Inconel 718合金锻坯粗轧加热过程的晶粒长大模型. 研究结果表明: 随加热时间的延长, 在1173 K加热时, 晶粒尺寸变化不显著; 1173-1323 K加热时, 晶粒尺寸呈线性长大; 高于1323 K加热时, 晶粒尺寸呈抛物线性长大. 所 建立的Inconel 718合金的晶粒长大模型适用于等温条件和非等温条件下晶粒尺寸演变的计算.

关键词 Inconel 718合金 晶粒长大模型 粗轧加热 等温条件 非等温条件    
Abstract

The Inconel 718 superalloy is extensively used to manufacture critical parts in aeronautical, astronautical, oil and chemical industries due to its excellent mechanical, physical and anti–corrosion behavior. Usually, these parts are shaped by hot forging or rolling in open–train mills.
Recently, the tandem hot rolling has been applied to form superalloy bar products. In some cases, it can replace the traditional rolling, since it has higher productivity and product quality. In order to obtain the most favorable microstructure and the best mechanical properties of Inconel 718 alloy in
tandem hot rolling, it is necessary to control its microstructural evolution in every step of the whole rolling process. With the aid of computer modeling, it is possible to make such a controlling process possible. As the first step in tandem hot rolling, reheating process of a forged slab prior to rough
rolling plays a predominant role in predicting the grain size change or even the microstructural evolution. Thus, in this study, an Inconel 718 alloy forged slab was used as the experimental material and the effects of reheating temperature and holding time on its grain growth were investigated. A
universal model was developed and verified for the grain growth of Inconel 718 alloy forged slab in reheating process prior to rough rolling. With the increase of holding time, the grain size shows no remarkable change up to 1173 K. The grain growth presents a linear trend in the range from 1173 to
1323 K. A parabolic trend of gain growth can be observed when reheating temperature is higher than 1323 KThe established grain growth model of Inconel 718 alloy would be suitable to calculate the grn size evolution under the both isothermal and non–isothermal reheating conditions. This could also provide a basis in formulating the technological parameters for tandem hot rolling of Inconel 718 superalloy.

Key wordsInconel 718 alloy    grain growth model    reheating prior to rough rolling    isothermal condition    non--isothermal condition
收稿日期: 2009-04-22     
ZTFLH: 

TG244.3

 
基金资助:

国家自然科学基金重点项目50634030和教育部新世纪优秀人才支持计划项目06--0285资助

作者简介: 陈礼清, 男, 1965年生, 教授, 博士

[1] Li C G, Fu H Z, Yu Q. Aerospace Materials. Beijing: National Defense Industry Press, 2002: 99
(李成功, 傅恒志, 于翘. 航空航天材料. 北京: 国防工业出版社, 2002: 99)
[2] Sundararaman M, Mukhopadhyay P, Banerjee S. Metall Trans, 1992; 23A: 2015
[3] Thomas A, El–Wahabi M, Cabrera J M, Prado J M. J Mater Process Technol, 2006; 177: 469
[4] Zhuang J Y, Du J H, Deng Q, Qu J L, Lu X D. The Wrought Superalloy GH4169. Beijing: Metallurgical Industry Press, 2006: 61
(庄景云, 杜金辉, 邓 群, 曲敬龙, 吕旭东. 变形高温合金GH4169. 北京: 冶金工业出版社, 2006: 61)
[5] Devadas C, Samarasekera I V, Hawbolt E B. Metall Trans, 1991; 22A: 335
[6] Jr. Siciliano F, Minami K, Maccagno T M, Jonas J J. ISIJ Int, 1996; 36: 1500
[7] Liu Z Y, Xu Y B, Wang G D. Simulation and Prediction of the Microstructural Evolution and Properties for Hot Rolled Steels. Shenyang: Northeastern University Press, 2004: 111
(刘振宇, 许云波, 王国栋. 热轧钢材组织-性能演变的模拟和预测. 沈阳: 东北大学出版社, 2004: 111)
[8] Liu D, Yang Y H, Geng J, Luo Z J. Acta Metall Sin (Engl Lett), 2007; 20: 373
[9] Liu D, Luo Z J. Chin J Nonferrous Met, 2003; 13: 1211
(刘 东, 罗子健. 中国有色金属学报, 2003; 13: 1211)
[10] Zhang J M, Gao Z Y, Zhuang J Y, Zhong Z Y. Metall Mater Trans, 1999; 30A: 2701
[11] Na Y S, Yeom J T, Park N K, Lee J Y. J Mater Process Technol, 2003; 141: 337
[12] Medeiros S C, Prasad Y V R K, Frazier W G, Srinivasan R. Mater Sci Eng, 2000; A293: 198
[13] Zhang J M, Gao Z Y, Zhuang J Y, Zhong Z Y. J Mater Process Technol, 1999; 88: 244
[14] Zhang J M, Gao Z Y, Zhuang J Y, Zhong Z Y. J Mater Process Technol, 2000; 101: 25
[15] Sellars C M, Whiteman J A. Met Sci, 1979; 13: 187
[16] Anelli E. ISIJ Int, 1992; 32: 440

[1] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[2] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[3] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[4] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[5] 刘永长, 张宏军, 郭倩颖, 周晓胜, 马宗青, 黄远, 李会军. Inconel 718变形高温合金热加工组织演变与发展趋势[J]. 金属学报, 2018, 54(11): 1653-1664.
[6] 张海燕 张士宏 程明. Delta工艺中Inconel 718合金中δ相的演变机制[J]. 金属学报, 2009, 45(12): 1451-1455.
[7] 曹富荣; 雷方; 崔建忠; 温景林 . 超塑变形晶粒长大模型的修正与实验验证[J]. 金属学报, 1999, 35(7): 770-772 .
[8] 刘文昌;陈宗霖;肖福仁;姚枚;王少刚;刘润广. 冷轧变形对Inconel 718合金δ相析出动力学的影响[J]. 金属学报, 1998, 34(10): 1049-1054.