Please wait a minute...
金属学报  2008, Vol. 44 Issue (3): 361-364     
  论文 本期目录 | 过刊浏览 |
熔体快淬法制备Fe81Ga19磁致伸缩合金
章愫 刘敬华 蒋成保 徐惠彬
北京航空航天大学材料学院
Melt quenched Fe81Ga19 magnetostriction alloy
ZHANG Su; LIU Jinghua; JIANG Chengbao; XU Huibin
引用本文:

章愫; 刘敬华; 蒋成保; 徐惠彬 . 熔体快淬法制备Fe81Ga19磁致伸缩合金[J]. 金属学报, 2008, 44(3): 361-364 .
, , , . Melt quenched Fe81Ga19 magnetostriction alloy[J]. Acta Metall Sin, 2008, 44(3): 361-364 .

全文: PDF(668 KB)  
摘要: 用GaIn合金冷却液体作为冷却介质,将Fe81Ga19熔体快淬制备出具有晶粒沿棒径向生长组织的合金棒。利用X射线极图反射法判定棒轴向取向为[110]方向。通过热分析和XRD测试结果,结合相图分析可知合金的相结构为A2无序体心立方结构相,热处理未改变合金的A2相结构,均在690℃附近发生了A2相的居里转变。合金棒材在无轴向压力条件下获得饱和磁致伸缩值为66ppm,在加压条件下磁致伸缩出现明显的压力效应,从10MPa 到50MPa的测量压力范围内,随压力增大,饱和磁致伸缩值增加,在50MPa压应力作用下饱和磁致伸缩值达到115ppm。
关键词 Fe-Ga合金熔体快淬磁致伸缩    
Abstract:Fe81Ga19 magnetostrictive alloy rods were prepared by quenching from melt into the GaIn cooling media. The optical microscopy results showed that fine columnar crystalline distributing in the transverse and longitudinal sections of Fe81Ga19 rod. The [110] texture along the rod was detected from X-ray pole figure. Combining thermal analysis (DSC、TG) and x-ray diffraction patterns (XRD), it could be determined that the alloy was mainly comprised of a disordered bcc A2 phase, which kept the same after heat treatment. A magnetic transition was monitored at about 690℃ for both the as-solidified and heat treated samples, consistent with the curie temperature of A2 phase. The saturation magnetostriction reached 66ppm without a pre-stress. The enhanced magnetostriction was obviously observed under a pre-stress. Magnetostriction rose with the increasing compressive stress in the experimental range from 10MPa to 50MPa. The saturation magnetostriction achieved up to 115ppm under a 50MPa compressive pre-stress.
Key wordsFe-Ga alloy    melt quenched    magnetostriction
收稿日期: 2007-07-31     
ZTFLH:  TG111  
[1]Guruswamy S,Srisukhumbowornchai N,Clark A E, Restorff J B,Wun-Fogle M.Scr Mater,2000;43:239
[2]Clark A E,Wun-Fogle M,Restorff J B,Lograsso T A, Cullen J R.IEEE Trans Magn,2001;37:2678
[3]Clark A E,Restorff J B,Wun-Fogle M,Lograsso T A, Schlagel D L.IEEE Trans Magn,2000;36:3238
[4]Srisukhumbowornchai N,Guruswamy S.J Appl Phys, 2001;90:5680
[5]Turtelli R S,Bormio-Numes C,Sninnecker J P,Gr(?)ssinger R.Physics,2006;384B:265
[6]Fu H Z,Guo J J,Su Y Q,Liu L,Xu D M,Li J S.Chin J Nonferrous Met,2003;13:797 (傅恒志,郭景杰,苏彦庆,刘林,徐达鸣,李金山.中国有色金属学报,2003;13:797)
[7]Ikeda O,Kainuma R,Ohnuma I,Fukamichi K,Ishida K. J Alloys Compd,2002;347:198
[8]Kawamiya N,Adachi K,Nakamura Y.J Phys Soc Jpn, 1972;33:1318
[9]Lograsso T A,Ross A R,Schlagel D L,Clark A E,Wun- Fogle M.J Alloys Compd,2003;350:95
[10]Kellogg R A,Flatau A B,Clark A E,Wun-Fogle M,Lo- grasso T A.J Appl Phys,2002;91:7821r
[1] 储双杰,杨勇杰,和正华,沙玉辉,左良. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算[J]. 金属学报, 2019, 55(3): 362-368.
[2] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[3] 刘印,刘铁,王强,王慧敏,王丽,赫冀成. 强磁场热处理对TbFe2和Tb0.27Dy0.73Fe1.95合金晶体取向、微观形貌和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(9): 1148-1152.
[4] 姚占全,赵增祺,江丽萍,郝宏波,吴双霞,张光睿,杨建东. 稀土Ce添加对Fe83Ga17合金微结构和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(1): 87-91.
[5] 李晓诚 丁雨田 胡勇. Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) 合金的微观组织与磁致伸缩性能[J]. 金属学报, 2012, 48(1): 11-15.
[6] 崔跃 蒋成保 徐惠彬. Tb-Dy-Fe-Co合金本征磁致伸缩性能[J]. 金属学报, 2011, 47(2): 214-218.
[7] 陈立彪 朱小溪 李川 刘敬华 蒋成保 徐惠彬. Fe81Ga19合金<001>取向单晶生长及磁致伸缩性能[J]. 金属学报, 2011, 47(2): 169-172.
[8] 张昌盛 马天宇 严密 裴永茂 高旭 . <110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金的磁机械阻尼特性[J]. 金属学报, 2009, 45(6): 749-753.
[9] 朱小溪 张天丽 蒋成保. Fe72.5Ga27.5磁致伸缩合金动态机电耦合系数K33[J]. 金属学报, 2009, 45(4): 455-459.
[10] 贾傲 张天丽 孟皓 蒋成保. 粘结巨磁致伸缩颗粒复合材料的磁致伸缩性能及涡流损耗[J]. 金属学报, 2009, 45(12): 1473-1478.
[11] 高学绪 李纪恒 朱洁 包小倩 贾俊成 张茂才 . 气体雾化制备Fe-Ga合金粉末的微结构及磁致伸缩性能[J]. 金属学报, 2009, 45(10): 1267-1271.
[12] 李纪恒; 高学绪; 朱洁; 张茂才; 何承先 . 轧制Fe-Ga合金的织构及磁致伸缩[J]. 金属学报, 2008, 44(9): 1031-1034 .
[13] 白夏冰; 马天宇; 蒋成保 . <110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金的磁机械耦合系数[J]. 金属学报, 2008, 44(10): 1231-1234 .
[14] 许云伟; 马天宇; 张晶晶; 严密 . 反铁磁Fe1-xMnx(0.30≤x≥0.55) 合金的磁致伸缩[J]. 金属学报, 2008, 44(10): 1235-1237 .
[15] 高芳; 蒋成保; 刘敬华; 徐惠彬 . 第三组元添加对Fe--Ga合金相组成和磁致伸缩性能的影响[J]. 金属学报, 2007, 43(7): 683-687 .