Please wait a minute...
金属学报  2006, Vol. 42 Issue (7): 708-714     
  论文 本期目录 | 过刊浏览 |
AISI304不锈钢熔化过程中夹杂物在固-液糊状区漂移与聚集行为的原位观察
梁高飞; 王成全; 方园
宝钢集团有限公司技术中心前沿技术研究所; 上海 201900
In Situ Observation on Movement And Agglomeration of Inclusion in Solid--Liquid Mush Zone During Melting of Stainless Steel AISI304
LIANG Gaofei; WANG Chengquan; FANG Yuan
Advanced Technology Institute; Technology Center of Baosteel; Shanghai 201900
引用本文:

梁高飞; 王成全; 方园 . AISI304不锈钢熔化过程中夹杂物在固-液糊状区漂移与聚集行为的原位观察[J]. 金属学报, 2006, 42(7): 708-714 .
, , . In Situ Observation on Movement And Agglomeration of Inclusion in Solid--Liquid Mush Zone During Melting of Stainless Steel AISI304[J]. Acta Metall Sin, 2006, 42(7): 708-714 .

全文: PDF(1258 KB)  
摘要: 利用Confocal激光扫描显微镜原位观察了AISI304不锈钢熔化过程中夹杂物在固-液(S-L)糊状区内的漂移与聚集行为。结果显示,夹杂在剩余固相形成的液相通道中漂移,剩余奥氏体体积分数70%时平均漂移速率为80 μm/s;近完全熔化时,远离S-L界面的夹杂漂移速率高达1500 μm/s,而S-L界面附近的夹杂速率在50 ~ 200 μm/s之间。发现近完全熔化时钢熔体表层存在一层金属膜(δ铁素体相),具有类似于固体金属的晶界与亚晶界,表层钢膜吸附夹杂;随着熔化进行,糊状区内可见夹杂由球状向蠕虫状发展;夹杂之间表现出强吸引力,在表层钢膜处发生聚集以及自球化等行为。
关键词 夹杂物Confocal激光扫描显微镜钢熔体    
Abstract:The movement and agglomeration of inclusion in the solid-liquid (S-L) zone during melting of an AISI304 stainless steel has been observed in-situ by using a confocal laser scanning microscope. The results show that the inclusion particles move through the liquid channels formed by the remaining solid. The average movement rate is 80 μm/s when the volume fraction of remaining austenite is about 70 %. Near to absolute melting, the movement rate of the inclusion far away from S-L interface is higher than 1500 μm/s, and that nearby the interface is in the range from 50 μm/s to 200 μm/s. A metal layer (δ ferrite phase) has been observed on the melt surface. It has the crystal boundary and sub-boundary similar to ordinary metal. The inclusions have been adsorbed by the metal layer. The morphology of the visible inclusion transfers from granular to worm-like during melting. The inclusions attract severely with each other, as a result, they agglomerate and granulate close-by the metal layer.
Key wordsinclusion    confocal laser scanning microscope    steel melt    movement    agglomeration    in-situ observation
收稿日期: 2005-10-18     
ZTFLH:  TG113  
[1] Chen M H,Shen R M.Iron Steel, 2000; 35(4): 69 (陈名浩,沈汝美.钢铁,200;5(4):69)
[2] Li B K,Huo H F,Luan Y J. Acta Metall Sin, 2003; 39: 932 (李宝宽,霍慧芳,栾叶君.金属学报,2003;39:932)
[3] Zhang B W,Deng K, Lei Z S,Ren Z M.Acta Metall Sin, 2004; 40: 623 (张邦文,邓康,雷作胜,任忠鸣.金属学报,2004;40:623)
[4] Zhu M Y, Sawada I. Acta Metall Sin, 1997; 33: 1215 (朱苗勇,Sawada I.金属学报,1997;33:1215)
[5] Yin H, Emi T,Shibata H. Acta Mater,1999; 47: 1523
[6] Dippenaar R, Phelan D. Metall Mater Thins, 2003; 34B:495
[7] Phelan D, Dippenaar R. ISIJ Int, 2004; 44: 414
[8] Phelan D, Dippenaar R. Metall Mater Trans, 2004; 35A:3701
[9] Yuki N, Shibata H, Emi T. ISIJ Int, 1998; 38: 317
[10] Mcdonald N, Scridha S. JOM, 2004; 56: 182
[11] Martin E V, Yan W, Seetharaman S. Steel Res Int, 2005;76: 306
[12] Misra P, Chevrier V,Sridhar S, Cramb A W. Metall Mater Trans, 2000; 31B: 1135
[13] Hiroyuki S, Hongbin Y, Satoru Y,Toshihiko E, Mikio S.ISIJ Int, 1998; 38: 149
[14] Haiwen L. Scan J Met, 2001; 30: 212
[15] Kimura S, Nakajima K, Mizoguchi S, Hasegawa H. Metall Mater Trans, 2002; 33A: 427
[16] Yin H B, Shibata H, Emi T, Suzuki M. ISIJ Int, 1997; 37:936
[17] Yin H B, Shibata H, Emi T, Suzuki M. ISIJ Int, 1997; 37:946
[18] Wei Z Y. Iron Steel, 1980; 15(2): 45 (魏振宇.钢铁,1980;15(2):45)
[19] Schubert Th, Loser W,Schinnerling S, Bacher I. Mater Sci Technol, 1995; 11: 181
[20] Pearson J R A. J Fluid Mech, 1958, 4: 489
[21] Ashkin A. Phys Rev Lett, 1970, 24: 156
[22] Shangguan D, Ahuja S, Stefanescu D M. Metall Trans,1992; 23A: 669
[1] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[4] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[5] 朱苗勇, 邓志银. 钢精炼过程非金属夹杂物演变与控制[J]. 金属学报, 2022, 58(1): 28-44.
[6] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[7] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[8] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[9] 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56(3): 257-277.
[10] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[11] 黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261.
[12] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[13] 王新华,李秀刚,李强,黄福祥,李海波,杨建. X80管线钢板中条串状CaO-Al2O3系非金属夹杂物的控制[J]. 金属学报, 2013, 49(5): 553-561.
[14] 马跃 苏航 潘涛 余音宏 杨才福 张永权 彭云. 中高碳钢中复合延性夹杂物控制研究[J]. 金属学报, 2012, 48(11): 1321-1328.
[15] 童文辉 王杰 周吉学 杨院生. 气体保护熔炼条件下Mg-Gd-Y-Zr合金的夹杂物[J]. 金属学报, 2012, 48(1): 63-69.