Please wait a minute...
金属学报  2006, Vol. 42 Issue (11): 1143-1148     
  论文 本期目录 | 过刊浏览 |
钢包内喷嘴与透气砖吹氩去夹杂水模型研究
郑淑国 朱苗勇
东北大学材料与冶金学院; 沈阳 110004
Water Model Study on Removing Inclusions in a Ladle With Argon Injected Through
ZHENG Shuguo; ZHU Miaoyong
School of Materials and Metallurgy; Northeastern University; Shenyang 110004
引用本文:

郑淑国; 朱苗勇 . 钢包内喷嘴与透气砖吹氩去夹杂水模型研究[J]. 金属学报, 2006, 42(11): 1143-1148 .
, . Water Model Study on Removing Inclusions in a Ladle With Argon Injected Through[J]. Acta Metall Sin, 2006, 42(11): 1143-1148 .

全文: PDF(785 KB)  
摘要: 钢包内吹氩过程夹杂物的去除效果直接影响钢产品的质量。本文通过选择乳状液滴模拟夹杂物和偏心底吹钢包水模型实验,考察了喷嘴和透气砖吹气条件下时间、吹气量对夹杂物去除行为的影响规律。结果表明:较小气量和较大气量分别在8 min和16 min内可将绝大部分的模拟夹杂物去除,28 min内可将能够去除的模拟夹杂物几乎全部去除;喷嘴吹气时存在一个最佳去夹杂气量,而透气砖吹气时较小气量的去夹杂效果要好于较大气量,且在一定的气量范围内通过透气砖吹气的去夹杂效果要明显好于通过喷嘴吹气。
关键词 钢包偏心底吹乳状液滴夹杂物水模    
Abstract:The removal efficiency of non-metallic inclusions from molten steel in gas-stirred ladles will directly affect the quality of steel product. In the present work, the effects of time and gas flowrate on inclusion removal in a ladle with eccentric bottom gas injected through nozzle and porous plug were investigated by choosing emulsion drops simulated as inclusions in a water model. The results show that most of the inclusions can be removed in eight minutes with smaller flowrates, while sixteen minutes needed with larger flowrates. All the inclusions which have the possibility to be removed almost disappeared from the system in twenty-eight minutes. With gas blowing through nozzle, there was a gas flowrate for the best of inclusions removal. With gas injected through porous plug, smaller gas flowrates seemed to be more efficient for inclusions removal. And within a range of gas flowrates, gas injected through porous plug seemed to be more efficient for inclusions removal than gas blowing through nozzle.
Key wordsladle    eccentric bottom-blowing    emulsion drop    inclusions    water modeling
收稿日期: 2006-03-17     
ZTFLH:  TF111  
[1] Murthy G G K, Mehrotra S P. Ironmaking Steelmaking, 1992; 19: 377
[2] Yin H B, Jin S T. Eng Chem Metall, 1994; 15: 202 (尹弘斌,金山同.化工冶金,1994;15:202)
[3] Zhou Y, Wang H C, Wang S J, Yue K X, Dong Y C. Steelmaking, 2002; 18(1): 38 (周云,王海川,王世俊,乐可襄,董元篪.炼钢,2002;18(1): 38)
[4] Mazumdar D, Guthrie R I L. ISIJ Int, 1995; 35: 1
[5] Chen Y S, He Y D, Huang Z Z. J Baotou Univ Iron Steel Technol, 2003; 22: 297 (陈义胜,贺友多,黄宗泽.包头钢铁学院学报,2003;22:297)
[6] Mazumdar D, Evans J W. ISIJ Int, 2004; 44: 447
[7] Ren S B, Chen Y S, Huang Z Z, He Y D. J Baotou Univ Iron Steel Technol, 2002; 21: 313 (任三兵,陈义胜,黄宗泽,贺友多.包头钢铁学院学报,2002; 21:313)
[8] Fan C M, Hwang W S. Ironmaking Steelmaking, 2002; 29: 415
[9] Fan C, Liu Z Z, Cai K K, Liu S H, Liang M, Gong F, Liu R N. Iron Steel, 2003; 38(3): 18 (樊晨,刘中柱,蔡开科,刘石虹,梁玫,巩飞,刘瑞宁.钢铁,2003;38(3):18)
[10] Lindskog N, Sandberg H. Scandinavian J Metall, 1973; 2: 71
[11] Okumura K, Ban M, Hirasawa M, Sano M, Mori K. ISIJ Int, 1995; 35: 832
[12] Liu X H, Mao Y, Song C, Sun W, Zhang J P, Yang A N, Cai K K. Iron Steel, 2005; 40(2): 27 (刘学华,茆勇,宋超,孙维,张建平,杨阿娜,蔡开科.钢铁,2005;40(2):27)
[13] Xue Z L, Wang Y F, Wang L T, Li Z B, Zhang J W. Acta Metall Sin, 2003; 39: 431 (薛正良,王义芳,王立涛,李正邦,张家雯.金属学报,2003; 39:431)
[14] Engh T A, Lindskog N. Scand J Metall, 1975; 4: 49
[15] Zhu M Y, Liu J H, Zheng S G. The 3rd China-Korea Joint Symposium on Advanced Steel Technology, Shang hai, 2003: 46
[16] Soder M, Jonsson P, Jonsson L. Steel Res, 2004; 75: 128
[17] Wang L T, Zhang Q Y, Peng S H, Li Z B. ISIJ Int, 2005; 45: 331
[18] Jin Y, Bi X G, Fu L C. Steelmaking, 2005; 21(4): 31 (金炎,毕学工,傅连春.炼钢, 2005;21(4):31)
[19] Soder M, Jonsson P, Alexis J. Scand J Metall, 2002; 31: 210
[20] Liu Y B, Wang S J, Zhou Y, Wang H C, Yue K X. J Baotou Univ Iron Steel Technol, 2001; 20: 272 (刘水兵,王世俊,周云,王海川,乐可襄.包头钢铁学院学报,2001;20:272)
[21] Iguchi M, Nozawa K, Morita Z I. ISIJ Int, 1991; 31: 952
[22] Zhu M Y. PhD Thesis, Northeastern University, Shenyang, 1994 (朱苗勇.东北大学博士学位论文,沈阳,1994)
[23] Zhu M Y, Swada I, Xiao Z Q. Acta Metall Sin, 1995; 31: B346 (朱苗勇,沢田郁夫,肖泽强.金属学报, 1995;31:B346)
[24] Ren S B, Chen Y S, Huang Z Z, He Y D. J Baotou Univ Iron Steel Technol, 2003; 22: 193 (任三兵,陈义胜,黄宗泽,贺友多.包头钢铁学院学报,2003; 22:193)
[25] Zhu M Y, Xiao Z Q. Maths-physical Modeling of Steel Refining Process. Beijing: Metallurgical Industry Press, 1998: 124 (朱苗勇,萧泽强.钢的精炼过程数学物理模拟.北京:冶金工业出版社, 1998:124)
[26] Sahai Y, Emi T. ISIJ Int, 1996; 36: 1166
[27] Zhu M Y, Zheng S G, Huang Z Z, Gu W P. Steel Res, 2005, 76: 718
[28] Wang L H, Lee H G, Hayes P. ISIJ Int, 1996; 36: 7
[1] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[4] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[5] 朱苗勇, 邓志银. 钢精炼过程非金属夹杂物演变与控制[J]. 金属学报, 2022, 58(1): 28-44.
[6] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[7] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[8] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[9] 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56(3): 257-277.
[10] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[11] 黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261.
[12] 王强, 王连钰, 李宏侠, 蒋佳伟, 朱晓伟, 郭占成, 赫冀成. 钢包出钢末期漩涡抑制机理探究及防漩设计[J]. 金属学报, 2018, 54(7): 959-968.
[13] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[14] 唐海燕,梁永昌. 钢包浇注末期汇流旋涡形成机理及影响因素*[J]. 金属学报, 2016, 52(5): 519-528.
[15] 王新华,李秀刚,李强,黄福祥,李海波,杨建. X80管线钢板中条串状CaO-Al2O3系非金属夹杂物的控制[J]. 金属学报, 2013, 49(5): 553-561.