Please wait a minute...
金属学报  2005, Vol. 41 Issue (4): 380-384     
  论文 本期目录 | 过刊浏览 |
等通道转角挤压Al--Cu合金的应力和应变疲劳行为比较
李英杰; 刘世民;吴世丁;张哲峰;王中光
中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016
Deformation~ Features Of AZ31 Mg--Alloy In Initial Period Of High Temperature Creep
LI Yingjie; LIU Shimin; WU Shiding; ZHANG Zhefeng; WANG Zhongguang
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
引用本文:

李英杰; 刘世民; 吴世丁; 张哲峰; 王中光 . 等通道转角挤压Al--Cu合金的应力和应变疲劳行为比较[J]. 金属学报, 2005, 41(4): 380-384 .
, , , , . Deformation~ Features Of AZ31 Mg--Alloy In Initial Period Of High Temperature Creep[J]. Acta Metall Sin, 2005, 41(4): 380-384 .

全文: PDF(420 KB)  
摘要: 通过恒应力和恒塑性应变控制疲劳实验, 比较了等通道转角挤压四道次的Al-0.7%Cu(质量分数)合金的疲劳寿命、表面变形形貌、疲劳开裂和疲劳断口。结果表明:样品发生明显的循环软化, 致使应变和应力疲劳寿命在高、低应力范围存在差别。在应变控制疲劳样品中, 塑性变形既可由剪切带来承担, 也可以由剪切带和形变带共同承担, 进而疲劳裂纹分别沿剪切带或形变带萌生。而应力控制疲劳的塑性变形只集中在剪切带中, 并导致剪切疲劳开裂。疲劳断口上存在典型的疲劳裂纹萌生区、缓慢扩展区、快速扩展区和最后瞬断区。
关键词 等通道转角挤压Al-0.7%Cu合金循环软化    
Abstract:Fatigue life, surface deformation morphology, fatigue cracking and fatigue fractography of Al-0.7%Cu (mass fraction) alloy, produced by equal channel angular pressing (ECAP) for 4 passes, were investigated under constant stress or plastic strain control. It is shown that the specimens displayed obvious cyclic softening, which caused some difference in fatigue life at low or high stress range under constant stress and strain conditions. The plastic strain is carried either by shear bands only, or by shear bands and deformation bands, in the specimens fatigued under strain control. Consequently, fatigue cracks nucleated either along shear bands or along deformation bands. However, the plastic strain only localized in the shear bands of the specimens under stress control, as a result, leading to shearing fatigue cracking. The fatigue fractography consists of several different zones, including fatigue crack initiation, slow, fast propagation and final fracture.
Key wordsAl-0.7%Cu alloy    cyclic softening    shear bands
收稿日期: 2004-06-23     
ZTFLH:  TG111.8  
[1]Segal V M. Mater Sci Eng, 1995; A197: 157
[2]Valiev R Z. Prog Mater Sci, 2000; 45: 103
[3]Iwahashi Y, Horita Z, Nemoto M, Longdon T G. Acta Mater, 1997; 45: 4733
[4]Iwahashi Y, Horita Z, Nemoto M, Longdon T G. Acta Mater, 1998; 46: 3317
[5]Wang Y M, Chen M W, Zhou F H, Ma E. Nature, 2002; 419: 912
[6]Valiev R Z. Adv Eng Mater, 2003; 5: 296
[7]Agnew S R, Weertman J R. Mater Sci Eng, 1998; A244: 145
[8]Hoppel H W, Zhou Z M, Mughrabi H, Valiev R Z. Philos Mag, 2002; A82: 1781
[9]Wu S D, Wang Z G, Jiang C B, Li G Y. Scr Mater, 2003; 48: 1605
[10]Vinogradov A Yu, Patlan V, Hashimoto S, Kitagawa K. Philos Mag, 2002; A82: 317
[11]Vinogradov A, Nagasaki S, Patlan V, Kitagawa K, Kawa zoe M. Nanostruct Mater, 1999; 11: 925
[12]Vinogradov A, Washikita A, Kitagawa K, Kopylov V I. Mater Sci Eng, 2003; A349: 318
[13]Chung C S, Kim J K, Kim H K, Kim W J. Mater Sci Eng, 2002; A337: 39
[14]Liu S M, Wang Z G. Scr Mater, 2003; 48: 1421
[15]Vinogradov A, Hashimoto S, Kopylov V I. Mater Sci Eng, 2003; A355: 277
[16]Vinogradov A, Patlan V, Suzuki Y, Kitagawa K, Kopylov V I. Ada Mater, 2002; 50: 1639
[17]Kim H K, Choi M I, Chung C S, Shin D H. Mater Sci Eng, 2003; A340: 243
[18]Vinogradov A Y, Stolyarov V V, Hashimoto S, Valiev R Z. Mater Sci Eng, 2001; A318: 163
[19]Polmear I J. Light Alloys. Edward Arnold, 1981
[20]Mughrabi H. Plastic Deformation and Fracture of Materials. UK, Cambridge: Cambridge Press, 1993
[21]Zheng L J, Chen C Q, Zhou T T, Liu P Y, Zeng M G. Mater Charact, 2003; 49: 455
[22]Zhang Z F, Wang Z G, Sun Z M. Ada Mater, 2001; 49: 2875
[23]Li S X, Li X W, Zhang Z F, Wang Z G. Philos Mag, 2002; A82: 867
[24]Suresh S. Fatigue of Materials (2nd ed). UK, Cambridge: Cambridge Press, 1998
[1] 郭廷彪, 李琦, 王晨, 张锋, 贾智. 单晶Cu等通道转角挤压A路径形变特征及力学性能[J]. 金属学报, 2017, 53(8): 991-1000.
[2] 潘瑜, 张殿涛, 谭雨宁, 李珍, 郑玉峰, 李莉. 等通道挤压制备医用超细晶Mg-3Sn-0.5Mn合金及其力学性能[J]. 金属学报, 2017, 53(10): 1357-1363.
[3] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
[4] 韩啸,陈吉,孙成,武占文,吴新春,张星航. 块体超细晶304L不锈钢的腐蚀及钝化性能的研究[J]. 金属学报, 2013, 49(3): 265-270.
[5] 吴世丁 安祥海 韩卫忠 屈伸 张哲峰. 等通道转角挤压过程中fcc金属的微观结构演化与力学性能[J]. 金属学报, 2010, 46(3): 257-276.
[6] 严凯 孙扬善 白晶 薛烽. 转模等通道转角挤压路径对AZ31镁合金组织和力学性能的影响[J]. 金属学报, 2010, 46(1): 27-33.
[7] 杨钢 黄崇湘 吴世丁 张哲峰. ECAP变形下304L奥氏体不锈钢的形变诱导马氏体相变[J]. 金属学报, 2009, 45(8): 906-911.
[8] 房大然; 段启强; 黄崇湘; 吴世丁; 张哲峰; 李家俊; 赵乃勤 . 等通道转角挤压Al-Cu合金的冲击性能[J]. 金属学报, 2007, 43(12): 1251-1255 .
[9] 黄崇湘; 吴世丁; 李广义; 刘腾; 姜传斌; 李守新 . 循环形变对超细晶铜室温拉伸行为的影响[J]. 金属学报, 2004, 40(11): 1165-1169 .
[10] 刘滕; 张伟; 吴世丁; 姜传斌; 李守新; 徐永波 . 双相合金Mg-8Li-1Al的等通道转角挤压 I.挤压过程中的变形方式[J]. 金属学报, 2003, 39(8): 790-794 .
[11] 刘滕; 张伟; 吴世丁; 姜传斌; 李守新; 徐永波 . 双相合金Mg-8Li-1Al的等通道转角挤压 II. 挤压后合金的室温拉伸性能[J]. 金属学报, 2003, 39(8): 795-798 .
[12] 吴世丁; 李强 . 铜单晶ECAE过程的剪切特征[J]. 金属学报, 2000, 36(6): 602-607 .
[13] 吴世丁; 王中光; 李广义 . 亚微米铜循环形变特征研究[J]. 金属学报, 1999, 35(9): 960-963 .
[14] 吴细毛;艾素华;张匀;王中光;韩行霖. 8090Al-Li合金的低周疲劳行为[J]. 金属学报, 1997, 33(7): 702-708.
[15] 柴惠芬;阮征;范群成. Cu及Cu-Zn合金预变形和循环软化的滑移线形貌[J]. 金属学报, 1994, 30(11): 502-506.