Please wait a minute...
金属学报  2005, Vol. 41 Issue (11): 1143-1149     
  论文 本期目录 | 过刊浏览 |
铜晶体的疲劳损伤微观机制
张哲峰; 段启强 ; 王中光
中国科学院金属研究所沈阳材料科学国家(联合)实验室
Micro-mechanisms of fatigue damage in copper crystals
ZHANG Zhefeng; DUAN Qiqiang; WANG Zhongguang
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences
引用本文:

张哲峰; 段启强; 王中光 . 铜晶体的疲劳损伤微观机制[J]. 金属学报, 2005, 41(11): 1143-1149 .
, , . Micro-mechanisms of fatigue damage in copper crystals[J]. Acta Metall Sin, 2005, 41(11): 1143-1149 .

全文: PDF(932 KB)  
摘要: 对Cu单晶体、双晶体和多晶体疲劳损伤微观机制的总结结果表明:在中、低应变范围Cu单晶体的疲劳裂纹主要沿驻留滑移带萌生, 而在高应变范围则沿粗大形变带萌生;Cu双晶体中疲劳裂纹总是优先沿大角度晶界萌生和扩展,而小角度晶界则不萌生疲劳裂纹;对于Cu多晶体, 疲劳裂纹主要沿大角度晶界萌生,有时也沿驻留滑移带萌生, 而孪晶界面两侧由于滑移系具有相容的变形特征而未观察到疲劳裂纹萌生.
关键词 Cu晶体疲劳裂纹驻留滑移带    
Abstract:Micro--mechanisms of fatigue damage in copper single-, bi- and poly- crystals were summarized in the present paper. A number of investigations reveal that fatigue crack mainly initiates along persistent slip bands (PSBs) in copper single crystals at low or medium strain range, however, nucleates along coarse deformation bands (DBs) at high strain range. For copper bi-crystals, various large-angle grain boundaries (GBs) are always the preferential sites for the nucleation and propagation of fatigue cracks while the low-angle GBs do not lead to fatigue cracking during fatigue. Fatigue cracks mainly nucleated along large--angle GBs, sometimes along PSBs in polycrystalline copper, however, the initiation of fatigue crack at twin boundaries (TBs) was not observed due to the compatible slip deformation across the TBs.
Key wordscopper crystal    fatigue crack    persistent slip band (PSB)
收稿日期: 2005-06-30     
ZTFLH:  TG113.25  
[1] Forsyth P J E. Nature, 1953; 171: 172
[2] Thompson N, Wadsworth N J, Louat N. Philos Mag, 1956; 1: 113
[3] Kemsley D S, Paterson M S. Acta Metall, 1960; 8: 453
[4] Basinski S J, Basinski Z B, Howie A. Philos Mag, 1969; 19: 899
[5] Hancock J R, Grosskreutz J C. Acta Metall, 1969; 17: 77
[6] Mughrabi H. Mater Sci Eng, 1978; 33: 207
[7] Winter A T. Philos Mag, 1974; A30: 719
[8] Finney J M, Laird C. Philos Mag, 1975; A31: 339
[9] Mughrabi H, Ackermann F, Herz K. ASTM STP 811, 1983
[10] Kim W H, Laird C. Acta Metall, 1978; 26: 789
[11] Suresh S. Fatigue of Materials. 2nd ed, Cambridge Press, 1998: 27
[12] Cheng A S, Laird C. Mater Sci Eng, 1981; 51: 111
[13] Essmann U, Gosele U, Mughrabi H. Philos Mag, 1981; A44: 405
[14] Zhang Z F, Wang Z G, Sun Z M. Acta Mater, 2001; 49: 2875
[15] Li X W, Wang Z G, Li S X. Philos Mag, 2000; A80: 1901
[16] Li S X, Li X W, Zhang Z F, Wang Z G. Philos Mag, 2002; A82: 867
[17] Hu Y M, Wang Z G. Acta Mater, 1997; 45: 2655
[18] Hu Y M, Wang Z G. Scr Mater, 1996; 35: 1019
[19] Hu Y M, Wang Z G. Int J Fatigue, 1997; 19: 59
[20] Hu Y M, Wang Z G. Int J Fatigue, 1998; 20: 463
[21] Zhang Z F, Wang Z G, Li S X. Fatigue Fract Eng Mater Struct, 1998; 21: 1307
[22] Zhang Z F, Wang Z G, Hu Y M. Mater Sci Eng, 1999; A269: 136
[23] Zhang Z F, Wang Z G. Philos Mag, 1999; A79: 741
[24] Wang Z G, Zhang Z F, Li X W, Jia W P, Li S X. Mater Sci Eng, 2001; A319-321: 63
[25] Zhang Z F, Wang Z G. Z Metallkd, 2002; 93: 1188
[26] Hu Y M, Wang Z G, Li G Y. Mater Sci Eng, 1996; 208: 260
[27] Zhang Z F, Wang Z G. Acta Mater, 2003; 51: 347
[28] Zhang Z F, Wang Z G, Hu Y M. Mater Sci Eng, 1999; A272: 412
[29] Zhang Z F, Wang Z G. Philos Mag Lett, 2000; 80: 483
[30] Lim L C, Tay Y K, Fong H S. Acta Metall Mater, 1990; 38: 595
[31] Christ H J. Mater Sci Eng, 1989; A117: L25
[32] Liang F L, Laird C. Mater Sci Eng, 1989; A117: 103
[33] Heinz A, Neumann P. Acta Metall Mater, 1990; 38: 1933
[34] Ma B T, Laird C. Acta Metall, 1989; 37: 337
[35] Basinski Z B, Basinski S J. Prog Mater Sci, 1992; 36: 89
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[3] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[4] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[5] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[6] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[7] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[8] 徐超, 佴启亮, 姚志浩, 江河, 董建新. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460.
[9] 杨健,董建新,张麦仓,贾建,陶宇. 新型镍基粉末高温合金FGH98的高温疲劳裂纹扩展行为研究[J]. 金属学报, 2013, 49(1): 71-80.
[10] 唐恋 卢磊. 孪晶片层厚度对纳米孪晶Cu疲劳性能的影响[J]. 金属学报, 2009, 45(7): 808-814.
[11] 熊缨 陈冰冰 郑三龙 高增梁. 16MnR钢在不同条件下的疲劳裂纹扩展规律[J]. 金属学报, 2009, 45(7): 849-855.
[12] 谢季佳 洪友士. 纳米晶Ni疲劳行为的实验研究[J]. 金属学报, 2009, 45(7): 844-848.
[13] 张哲峰 张鹏 田艳中 张青科 屈伸 邹鹤飞 段启强 李守新 王中光. 金属材料疲劳损伤的界面效应[J]. 金属学报, 2009, 45(7): 788-800.
[14] 钱桂安 洪友士. 环境介质对40Cr结构钢高周和超高周疲劳行为的影响[J]. 金属学报, 2009, 45(11): 1356-1363.
[15] 鲁连涛 李伟 张继旺 盐泽和章 张卫华. GCr15钢旋转弯曲超长寿命疲劳性能分析[J]. 金属学报, 2009, 45(1): 73-78.