Please wait a minute...
金属学报  2005, Vol. 41 Issue (1): 28-    
  论文 本期目录 | 过刊浏览 |
0Cr13Ni4Mo马氏体不锈钢表层的喷丸强化
马素媛 陈 瑞 贺笑春 李家宝 郝学卓
中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳110016
Shot Peening Induced Strengthening Of The Surface Layer Of Martensite Stainless Steel 0Cr13Ni4Mo
MA Suyuan; CHEN Ri; HE Xiaochun; LI Jiabao;HAO Xuezhuo
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
引用本文:

马素媛; 陈瑞; 贺笑春; 李家宝; 郝学卓 . 0Cr13Ni4Mo马氏体不锈钢表层的喷丸强化[J]. 金属学报, 2005, 41(1): 28-.
, , , , . Shot Peening Induced Strengthening Of The Surface Layer Of Martensite Stainless Steel 0Cr13Ni4Mo[J]. Acta Metall Sin, 2005, 41(1): 28-.

全文: PDF(213 KB)  
摘要: 对经1000℃正火和600℃回火的水轮机过流部件用钢0Cr13Ni4Mo进行喷丸处理,测量了喷丸影响层的显微硬度、X射线衍射线半高宽和屈服强度等参量的沿层深分布, 并计算了相应的晶块尺寸、微观应变和位错密度等微观结构参量.结果表明,该影响层以显微硬度和屈服强度表征的组织强化效应显著,显微硬度和屈服强度提高是由于晶块细化、微观应变和位错密度增大造成的。喷丸影响层不同部位的显微硬度与条件屈服点之比约为3.37;半高宽与显微硬度之间存在两段式线性关系Hw=2.07×10-3HV-3.47 (HV<2835MPa)和Hw=1.14×10-3HV-0.81 (HV>2835MPa),条件屈服点 与位错密度的平方根 之间存在Bailey-Hirsch线性关系: =551+16.2×10-4 。
关键词 马氏体不锈钢喷丸影响层组织强化    
Abstract:A low carbon martensite stainless steel 0Cr13Ni4Mo normalized at 1000℃ and tempered at 600℃, used in the guide stream assemblies of water turbine, was treated with shot peening. The depth distributions of microhardness, half-width value of X-ray diffraction profiles and yield strength in the shot-peening affected layer were measured. Correspondingly, the depth distributions of microstructure parameters, such as subgrain size, microstrain and dislocation density, in this layer were calculated. The experimental results indicate that the structure strengthening charactered by microhardness and yield strength is prominent. The subgrain size decreases, and the microstrain and dislocation density increase in the shot-peening affected layer. As a result, the microhardness and yield strength in this layer increase. The ratios of microhardness to proof stress, , are all about 3.37 in different depth of the affected layer. The relation of the half-width value, Hw, and microhardness, HV, in this layer is linear, which is composed of two beelines: if HV<2835MPa, Hw=2.07×10-3HV-3.47, and if HV>2835MPa, Hw=1.14×10-3HV-0.81. The relation of the proof stress, , and square root of dislocation density, , in this layer is also linear: =551+16.2×10-4 .
Key wordsmartensite stainless steel    shot peening affected layer    structure strengthening
收稿日期: 2004-03-17     
ZTFLH:  TG142.7  
[1] Li X Y, Zhang Z Q. In: Sun G X ed, Proc of 9th Chinese Conf on Foundry, Shenyang: Northeastern University Press, 1997: 51(李新亚,张仲秋.见:孙国雄主编,第九届中国铸造学术会议论文集,沈阳:东北大学出版社,1997:51)
[2] Wang Z C, Chen H N. Abrasive Erosion Hydraulic Turbine, 2001: 56(王者昌,陈怀宁.水机磨蚀,2001:56)
[3] Duan G C. Silt Abrasive Erosion of Hydraulic Turbine. Beijing: Tsinghua University Press, 1981(段国昌.水轮机沙粒磨损.北京:清华大学出版社,1981)
[4] Hirsch T, Vohringer O, Macherauch E. Horterei-technMitt, 1986; 41(3): 166
[5] Hashimoto M, Shiratori M, Nagashima S. In: Iida K ed,Proc 4th Int Conf on Shot Peening, Tokyo: Japan Societyof Precision Engineering, 1990: 495
[6] Sharp P K, Clayton J Q, Clark G. Fatigue Fract EngMater Struct, 1994; 17(3): 243
[7] Kunio N. Tetsu-to-Hagane, 1994; 80, N233
[8] Vohringer O. In: Wohlfahrt H, Kopp R, Vohringer O eds,Shot Peening Science Technology Application, Oberursel:Informationsgesellschaft Verlag, 1987: 185
[9] Li J B. Chin J Mater Res, 1998; 12: 287(李家宝.材料研究学报,1998;12:287)
[10] Li J B. Liu F Z, Ji V. Surf Eng, 1998; 14: 469
[11] Xu J H. Masters Thesis, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang, 2003(徐建辉.中国科学院金属研究所硕士学位论文,沈阳,2003)
[12] Ji V, Zhang Y G, Chen C Q. Surf Coat Technol, 2000;130: 95
[13] Ji N, Lebrun J L, Belliad P, Bourniquel B, Maeder G. In:Beck G, Denis S, Simon A eds, Proc of 2nd Int Conf OnResidual Stresses, Int Conf on Residual Stresses, London:Elsevier Applied Science, 1989: 65
[14] Hayden H W, Floreen S. Metall Trans, 1973; 4: 561
[15] Liu S. Fatigue Performance and Strengthening Technologyof Shot Peening for Metallic Materials. Beijing: DefenceIndustry Press, 1977: 48(刘锁.金属材料的疲劳性能与喷丸强化工艺.北京:国防工业出版社,1977:48)
[16] Ashby M F, Jones D R H. Engineering Materials. Oxford:Pergamon Press, 1980: 105
[17] Wang R Z. J Mech Eng Mater, 1988; 68(5): 19(王仁智.机械工程材料,1988;68(5):19)
[18] Feng D. Metallic Physics: Metal Mechanical Property. Beijing: Science Press, 1999: 373(冯端.金属物理学-金属力学性质.北京:科学出版社,1999:373)
[19] Lai Z H. Crystal Defect and Mechanical Properties of Metals. Beijing: Metallurgical Industry Press, 1988: 197(赖祖涵.金属的晶体缺陷与力学性质.北京:冶金工业出版社,1988:197)
[1] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
[2] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
[3] 黄海威, 王镇波, 刘莉, 雍兴平, 卢柯. 马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响*[J]. 金属学报, 2015, 51(5): 513-518.
[4] 张盛华,王培,李殿中,李依依. ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究*[J]. 金属学报, 2015, 51(11): 1306-1314.
[5] 王帅, 杨春光, 徐大可, 沈明钢, 南黎, 杨柯. 热处理对3Cr13MoCu马氏体不锈钢抗菌性能的影响[J]. 金属学报, 2014, 50(12): 1453-1460.
[6] 雷明凯 王克胜 欧伊翔 张磊. 泵阀用2Cr13马氏体不锈钢等离子体基低能氮离子注入研究[J]. 金属学报, 2011, 47(12): 1490-1494.
[7] 王培; 陆善平; 李殿中; 康秀红; 李依依 . 低加热速率下ZG06Cr13Ni4Mo低碳马氏体不锈钢回火过程的相变研究[J]. 金属学报, 2008, 44(6): 681-685 .