H C O 3 - ,无氧腐蚀," /> H C O 3 - ,无氧腐蚀,"/> H C O 3 - ,deaeration corrosion,"/> 模拟高放废物地质处置环境下重碳酸盐浓度对低碳钢活化/钝化腐蚀倾向的影响<sup>*</sup>
Please wait a minute...
金属学报  2014, Vol. 50 Issue (3): 275-284    DOI: 10.3724/SP.J.1037.2013.00497
  本期目录 | 过刊浏览 |
模拟高放废物地质处置环境下重碳酸盐浓度对低碳钢活化/钝化腐蚀倾向的影响*
文怀梁1,2, 董俊华2(), 柯伟2, 陈文娟2, 阳靖峰2, 陈楠2
1 中国科学技术大学化学与材料科学学院, 合肥 230026
2 中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
ACTIVE/PASSIVE BEHAVIOR OF LOW CARBON STEEL IN DEAERATED BICARBONATE SOLUTION
WEN Huailiang1,2, DONG Junhua2(), KE Wei2, CHEN Wenjuan2, YANG Jingfeng2, CHEN Nan2
1 College of Chemical and Materials Science, University of Science and Technology of China, Hefei 230026
2 State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

文怀梁, 董俊华, 柯伟, 陈文娟, 阳靖峰, 陈楠. 模拟高放废物地质处置环境下重碳酸盐浓度对低碳钢活化/钝化腐蚀倾向的影响*[J]. 金属学报, 2014, 50(3): 275-284.
Huailiang WEN, Junhua DONG, Wei KE, Wenjuan CHEN, Jingfeng YANG, Nan CHEN. ACTIVE/PASSIVE BEHAVIOR OF LOW CARBON STEEL IN DEAERATED BICARBONATE SOLUTION[J]. Acta Metall Sin, 2014, 50(3): 275-284.

全文: PDF(9115 KB)   HTML
摘要: 

在除氧的H C O 3 - 溶液中, 采用原位测量开路电位方法研究了H C O 3 - 浓度对低碳钢腐蚀活化/钝化状态的影响, 用SEM观察了低碳钢电极在除氧的H C O 3 - 溶液中长期腐蚀后的表面形貌, 用电化学阻抗谱(EIS)方法研究了电极的腐蚀演化特征及规律, 用XRD方法检测了腐蚀产物的相组成. 结果表明, 低碳钢的开路电位随浸泡时间的延长以及H C O 3 - 浓度的升高而升高; 长期浸泡后, 在0.01 mol/L H C O 3 - 溶液中低碳钢的阳极溶解处于极限扩散状态, 而在高于0.02 mol/L H C O 3 - 溶液中处于钝化状态; 锈层的主要腐蚀产物为α-FOOH和Fe3O4.

关键词 低碳钢活化/钝化高放废物处置H C O 3 - ')" href="#">H C O 3 - 无氧腐蚀    
Abstract

As a kind of clean, efficient and relatively safe energy, nuclear energy has been widely used around the world. The high-level radioactive waste (HLRW) generated in the nuclear has also become a major risk, so the disposal safety of HLRW will be especially important. The planned concept of China's HLRW disposal program is a shaft-tunnel model located in saturated zones in granite. The metal container for sealing the HLRW is the key because its interaction with the ground water will lead to the leak of the HLRW during the long repository time. Beishan is a selected repository area and the ground water contains a bicarbonate (H C O 3 - ) buffer solution. Therefore, as a candidate material of the container, the active/passive state of low carbon steel in the ground water with is of significance, which determines the container's service life. The active state will ensure that the container achieves the designed life under general corrosion, and moreover the passive state will degrade the container's life under stress corrosion cracking (SCC) caused by pitting corrosion. In this work, the effect of H C O 3 - on the corrosion behavior of low carbon steel was examined in deaerated bicarbonate solutions (pH 8.3) over 50 d. The presence of H C O 3 - enhanced both the anodic Fe dissolution and cathodic hydrogen evolution reaction. The situ-measurement of corrosion potential revealed that the increased concentration of H C O 3 - led to the high corrosion potential. When the concentration of H C O 3 - was 0.01 mol/L, the corrosion potential was in the active region. When the concentration of H C O 3 - was higher than 0.02 mol/L, the corrosion potential was in the passive region. EIS results showed that the charge transfer resistance, film resistance and the diffusion impedance increased with the increasing H C O 3 - concentration. Results of XRD analysis illustrated that the key corrosion products were mainly composed of Fe3O4 and α-FeOOH.

Key wordslow carbon steel    passive/active    high-level radioactive waste disposal    H C O 3 - ')" href="#">H C O 3 -    deaeration corrosion
收稿日期: 2013-08-18     
ZTFLH:  TF777.1  
基金资助:* 国家自然科学基金资助项目51071160
作者简介: null

文怀梁, 男, 1988年生, 硕士生

图 1.  低碳钢在除氧 H C O 3 - 溶液中的极化曲线
图 2.  低碳钢在除氧 H C O 3 - 溶液中的电位监测曲线
图 3.  低碳钢在含有0.01 mol/L H C O 3 - 的除氧溶液中长期浸泡的EIS 谱
图 4.  低碳钢在含有0.02 mol/L H C O 3 - 的除氧溶液中长期浸泡的EIS 谱
图 5.  低碳钢在含有0.05 mol/L H C O 3 - 的除氧溶液中长期浸泡的EIS 谱
图 6.  低碳钢在含有0.1 mol/L H C O 3 - 的除氧溶液中长期浸泡的EIS 谱
图 7.  拟合电化学阻抗谱曲线的等效电路
Time / d Yr
mS·sn·cm-2
nr Rr
Ω· cm2
Ydl
mS·sn·cm-2
ndl Rct
kΩ·cm2
Yw
mS·s0.5·cm-2
Initial - - - 0.33 0.7 3.4 -
5 0.28 0.5 2.7×10-5 0.11 1.0 6.7 -
14 0.11 1.0 15 0.33 0.5 6.9 -
27 0.14 1.0 46 0.52 0.5 6.6 -
33 0.66 0.8 62 0.83 0.2 6.9 -
59 1.40 0.9 89 3.60 0.6 7.1 120
表1  低碳钢在0.01 mol/L H C O 3 - 溶液中浸泡的电化学阻抗拟合结果
Time / d Yr
mS·sn·cm-2
nr Rr
Ω·cm2
Ydl
mS·sn·cm-2
ndl Rct
kΩ·cm2
Yw
mS·s0.5·cm-2
Initial - - - 0.34 0.7 2.2 -
23 0.21 1.0 26 6.00 0.5 1.0 0.60
29 0.13 1.0 31 5.50 0.6 1.6 0.32
35 0.27 1.0 38 5.00 0.6 1.9 1.30
39 1.10 0.7 71 5.50 0.6 1.9 4.0×10-3
表2  低碳钢在0.02 mol/L H C O 3 - 溶液中浸泡的电化学阻抗拟合结果
Time / d Yr
mS·sn·cm-2
nr Rr
Ω·cm2
Ydl
mS·sn·cm-2
ndl Rct
kΩ·cm2
Yw
mS·s0.5·cm-2
Initial - - - 0.35 0.7 2.4 -
5 0.12 0.9 0.06 0.28 0.6 2.6 -
23 0.43 0.8 5.90 0.60 0.6 2.8 5.6×10-5
39 0.35 0.7 22.0 0.19 0.6 2.4 2.1×10-4
46 0.07 1.0 34.0 0.47 0.6 1.9 1.7×10-4
52 0.07 1.0 48.0 0.72 0.7 1.5 3.4×10-4
表3  低碳钢在0.05 mol/L H C O 3 - 溶液中浸泡的电化学阻抗拟合结果
Time / d Yr
mS·sn·cm-2
nr Rr
Ω·cm2
Ydl
mS·sn·cm-2
ndl Rct
kΩ·cm2
Yw
mS·s0.5·cm-2
Initial - - - 0.29 0.8 3.90 -
9 0.16 0.5 1 0.34 1.0 4.70 -
23 0.07 1.0 11 1.40 0.6 2.00 4.9×10-7
26 0.13 1.0 22 1.40 0.7 0.15 1.7×10-17
41 0.20 1.0 40 1.20 0.7 0.17 1.0×10-16
48 0.76 0.7 53 0.59 0.7 0.18 1.0×10-17
表4  低碳钢在0.1 mol/L H C O 3 - 溶液中浸泡的电化学阻抗拟合结果
[1] Wang J, Su R, Chen W M, Guo Y H, Jin Y X, Wen Z J, Liu Y M. Chin J Rock Mech Eng, 2006; 25: 649
[1] (王 驹, 苏 锐, 陈伟明, 郭永海, 金远新, 温志坚, 刘月妙. 岩石力学与工程学报, 2006; 25: 649)
[2] Gordon G M. Corrosion, 2002; 58: 811
[3] King F, Padovani C. Corros Eng Sci Technol, 2011; 46: 82
[4] Saheb M, Neff D, Dillmann P, Matthiesen H, Foy E. J Nucl Mater, 2008; 379: 118
[5] Yang J F, Dong J H, Ke W. Acta Metall Sin, 2011; 47: 1321
[5] (阳靖峰, 董俊华, 柯 伟. 金属学报, 2011; 47: 1321)
[6] Taniguchi N, Honda A, Ishikawa H. MRS Symp Process, 1998; 506: 495
[7] Thomas J G N, Nurse T J, Walker R. Br Corros J, 1970; 5(2): 87
[8] Armstrong R D, Coates A C. J Electroanal Chem, 1974; 50: 303
[9] Castro E B, Valentine C R, Monia C A, Vilche J R, Arvia A J. Corros Sci, 1986; 26: 781
[10] Castro E B, Vilche J R, Arvia A J. Corros Sci, 1991; 32: 37
[11] Rozenfeld J L. Atmospheric Corrosion of Metals. Houston: NACE, 1972: 1
[12] Féron D, Crusset D, Gras J M. J Nucl Mater, 2008; 379: 16
[13] Videm K, Dugstad A. Mater Perform, 1989; 28(4): 46
[14] Davies D H, Burstein G T. Corrosion, 1980; 36: 416
[15] Valentini C R, Moina C A, Vilche J R, Arvia A J. Corros Sci, 1985; 25: 985
[16] Wersin P, Spahin K, Bruno J. SKB Technical Report (9402). Stockholm: Swedish Nuclear Fuel and Waste Management Co., 1994: 1
[17] Smart N R, Blackwood D J, Werme L. Corrosion, 2002; 58: 547
[18] Smart N R, Blackwood D J, Werme L. Corrosion, 2002; 58: 627
[19] Reardon E J. Environ Sci Technol, 1995; 29: 2936
[20] Dong J H, Nishimura T, Kodama T. MRS Symp Process, 2002; 713: 105
[21] Nishimura T, Dong J H. J Power Energy System, 2009; 3: 23
[22] Azoulay I, Rémazeilles C, Refait P. Corros Sci, 2012; 58: 229
[23] Marsh G P, Taylor K J, Bland I D, Westcott C, Tasker P W, Sharland S M. MRS Symp Process, 1985; 50: 421
[24] Hao L, Zhang S X, Dong J H, Ke W. Corros Sci, 2012; 59: 270
[25] Cox B, Wong Y M. J Nucl Mater, 1995; 218: 324
[26] Orazem M E, Tribollet B. Electrochemical Impedance Spectroscopy. New York: John Wiley & Sons, 2008: 246
[27] Cao C N,Zhang J Q. Introduction of Electrochemical Impedance Spectroscopy. Beijing: Science Press, 2002: 88
[27] (曹楚南,张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 88)
[28] Almeida E, Morcillo M, Rosales B M, Marrocos M. Mater Corros, 2000; 51: 859
[29] Yamashita M, Miyuki H, Nagaro H, Misawa T. Corros Sci, 1994; 36: 283
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[3] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[4] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[5] 穆鑫, 魏洁, 董俊华, 柯伟. 牺牲阳极保护对Q235B钢在模拟海洋潮差区间腐蚀行为的影响[J]. 金属学报, 2014, 50(11): 1294-1304.
[6] 傅欣欣, 董俊华, 韩恩厚, 柯伟. 低碳钢Q235在模拟酸雨大气腐蚀条件下的电化学阻抗谱监测*[J]. 金属学报, 2014, 50(1): 57-63.
[7] 谭向虎,单际国,任家烈. Cr层对低碳钢/CFRP激光连接接头剪切强度及界面结合特征的影响[J]. 金属学报, 2013, 49(6): 751-756.
[8] 陈高,高子英. 焊接工艺参数对低碳钢CO2激光深熔焊接气孔形成的影响[J]. 金属学报, 2013, 49(2): 181-186.
[9] 侯自勇 许云波 吴迪. 超快速退火下超低碳钢的再结晶行为研究[J]. 金属学报, 2012, 48(9): 1057-1066.
[10] 任勇强 谢振家 尚成嘉. 低碳钢中残余奥氏体的调控及对力学性能的影响[J]. 金属学报, 2012, 48(9): 1074-1080.
[11] 穆鑫,魏洁,董俊华,柯伟. 低碳钢在模拟海洋潮差区的腐蚀行为的电化学研究[J]. 金属学报, 2012, 48(4): 420-426.
[12] 许恒栋 赵海燕 S¨orn Ocylok Igor Kelbassa. 低碳钢表面激光直接镀Ti层中裂纹形成的研究[J]. 金属学报, 2012, 48(2): 142-147.
[13] 张朋 张福成 王天生. 渗碳20CrMnMoAl钢表面硬贝氏体的制备及其组织特征[J]. 金属学报, 2011, 47(8): 1038-1045.
[14] 阳靖峰 董俊华 柯伟 陈楠. 硼酸缓冲溶液中pH值和腐蚀产物对低碳钢活化/钝化敏感性的影响[J]. 金属学报, 2011, 47(2): 152-156.
[15] 阳靖峰 董俊华 柯伟. 重碳酸盐溶液中SO42-和Cl-对低碳钢活化/钝化腐蚀行为的影响[J]. 金属学报, 2011, 47(10): 1321-1326.