Please wait a minute...
金属学报  2010, Vol. 46 Issue (7): 857-861    DOI: 10.3724/SP.J.1037.2010.00088
  论文 本期目录 | 过刊浏览 |
不同酸溶液中制备纳米结构MnO2单晶
陈永1, 2),洪玉珍1, 2),马艳平1, 2),杨昊1, 2),李健保1, 2)
1) 海南大学硅锆钛资源综合开发与利用海南省重点实验室, 海口 570228
2) 海南大学海南优势资源化工材料应用技术教育部重点实验室, 海口 570228
PREPARATION OF NANOSTRUCTURE MnO$_{\bf 2}$ SINGLE CRYSTAL IN VARIOUS ACID SOLUTION
CHEN Yong1, 2), HONG Yuzhen1, 2), MA Yanping1, 2), YANG Hao1, 2), LI Jianbao1, 2)
1) Hainan Provincial Key Laboratory of Research on Utilization of Si--Zr--Ti Resources, Hainan University, Haikou 570228
2) Ministry of Education Key Laboratory of Application Technology of Hainan Superior Resources Chemical Materials, Hainan University, Haikou 570228
引用本文:

陈永 洪玉珍 马艳平 杨昊 李健保. 不同酸溶液中制备纳米结构MnO2单晶[J]. 金属学报, 2010, 46(7): 857-861.
, , , , . PREPARATION OF NANOSTRUCTURE MnO$_{\bf 2}$ SINGLE CRYSTAL IN VARIOUS ACID SOLUTION[J]. Acta Metall Sin, 2010, 46(7): 857-861.

全文: PDF(782 KB)  
摘要: 

本文采用KMnO4在不同酸溶液中的氧化还原反应, 合成MnO2纳米结构, 利用 XRD和HRTEM对样品的晶体结构、形貌和微观结构进行表征分析. 结果表明, KMnO4在无机酸(H2SO4, HCl和HNO3)和有机酸(C2H4O2)中发生反应均能制备MnO2纳米材料; 通过调节溶液pH值和反应温度等参数可以控制MnO2形貌和晶体结构; 在低温和较低酸浓度条件下, 得到层状褶皱结构的δ-MnO2微球, 而在高温和较高酸浓度条件下, 可制备出一维α-MnO2单晶纳米棒. 同时对在这些不同反应系统中制备MnO2纳米材料的反应机理进行了研究.

关键词 MnO2纳米结构 氧化还原反应    
Abstract

Nanostructure MnO2 single crystal was prepared through redox reactions of potassium permanganate in different inorganic acid (hydrochloric acid, sulfuric acid and nitric acid) and organic acid (acetate). The products were characterized by TEM and XRD. It indicated that the crystal structure and morphology of the synthesized MnO2 can be tailored by adjusting the pH value in solution and reaction temperature. It was also found that layer folded δ-MnO2 microspheres were obtained at low reaction temperature and low hydrochloric acid concentration, whereas α-MnO2 single-crystal nanorods were fabricated with increased reaction temperature and hydrochloric acid concentration. The possible formation mechanism of δ-MnO2 microspheres and α-MnO2 nanorods is also discussed.

Key wordsMnO2    nanostructures    redox reaction
收稿日期: 2010-02-11     
基金资助:

国家自然科学基金项目50762003和海南省自然科学基金项目807009资助

作者简介: 陈永, 男, 1970年生, 副教授, 博士

[1] Liao M Y, Lin J M, Wang J H, Yang C T, Chou T L, Mok B H. Electrochem Commun, 2003; 5: 312
[2] Reddy R N, Reddy R G. J Power Sources, 2004; 132: 315
[3] Ataherian F, Zolfaghari A, Jafari S M, Ghaemi M. Electrochim Acta, 2008; 53: 4607
[4] Park M S, Yoon W Y. J Power Sources, 2003; 114: 237
[5] Manickam M, Singh P, Issa T B, Thurgate S, Marco R D. J Power Sources, 2004; 130: 254
[6] Sugantha M, Ramakrishnan P A, Hermann A M, Warmsingh C P, Ginley D S. Int J Hydrogen Energy, 2003; 28: 597
[7] Ghaemi M, Gholami A, Moghaddam R B. Electrochim Acta, 2008; 53: 3250
[8] Reddy A L M, Shaijumon M M, Gowda S R, Ajayan P M. Nano Lett, 2009; 9: 1002
[9] Devaraj S, Munichandraiah N. J Phys Chem, 2008; 112C: 4406
[10] Wang X, Li Y D. J Am Chem Soc, 2002; 124: 2880
[11] Wang X, Li Y D. Chem Eur J, 2003; 9: 300
[12] Xiao T D, Bokhimi X, Benaissa M, Perez R, Strutt P R, Yacaman M J. Acta Mater, 1997; 45: 1685
[13] Yuan Z Y, Zhang Z, Du G, Ren T Z, Su B L. Chem Phys Lett, 2003; 378: 349
[14] Wang X, Li Y. J Am Chem Soc, 2002; 124: 2880
[15] Zhang Y, Chen L, Zheng Z, Yang F. Solid State Sci, 2009; 11: 1265
[16] Huang X, Lv D, Yue H, Attia A, Yang Y. Nanotechnology, 2008; 19: 225606
[17] Wei M, Konishi Y, Zhou H, Sugihara H, Aiakawa H. Nanotechnology, 2005; 16: 245
[18] Chen Y, Liu C, Li F, Cheng H M. J Alloys Compd, 2005; 397: 282
[19] Chen Y, Hong Y, Ma Y, Li J. J Alloys Compd, 2010; 490: 331
[20] Kijima N, Yasuda H, Sato T, Yoshimura Y. J Solid State Chem, 2001; 159: 94
[21] Muraoka Y, Chiba H, Atou T, Kikuchi M, Hiraga K, Syono Y. J Solid State Chem, 1999; 144: 136

[1] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[2] 刘悦, 汤鹏正, 杨昆明, 沈一鸣, 吴中光, 范同祥. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展[J]. 金属学报, 2021, 57(2): 150-170.
[3] 杨建海,张玉祥,葛利玲,陈家照,张鑫. 2A14铝合金混合表面纳米化对电化学腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1413-1422.
[4] 黄海威, 王镇波, 刘莉, 雍兴平, 卢柯. 马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响*[J]. 金属学报, 2015, 51(5): 513-518.
[5] 卢柯. 梯度纳米结构材料[J]. 金属学报, 2015, 51(1): 1-10.
[6] 陶乃镕, 卢柯. 纳米结构金属材料的塑性变形制备技术*[J]. 金属学报, 2014, 50(2): 141-147.
[7] 宫文彪,李任伟,李于朋,孙大千,王文权. CeO2/ZrO2-Y2O3纳米结构热障涂层的高温稳定性及耐腐蚀性能[J]. 金属学报, 2013, 49(5): 593-598.
[8] 郝玉琳; 杨锐 . 纳米高强Ti-Nb-Zr-Sn合金[J]. 金属学报, 2005, 41(11): 1183-1189 .
[9] 张伟; 隋曼龄; 周亦胄; 何冠虎; 郭敬东; 李斗星 . 高密度电脉冲下材料微观结构的演变[J]. 金属学报, 2003, 39(10): 1009-1018 .
[10] H.Gleiter. 纳米结构材料(英文)[J]. 金属学报, 1997, 33(2): 165-174.