Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2025.00053
  本期目录 | 过刊浏览 |
成形工艺参数及后处理对激光粉末床熔融成形GH3536合金室温拉伸性能的影响
王源晨1,胡炳利1,2,张剑锋3,侯慧鹏3,宋竹满1,张广平1
1. 中国科学院金属研究所 高性能均质合金国家工程研究中心  沈阳110016
2. 中国科学技术大学 材料科学与工程学院  沈阳 110016
3. 中国航发商用航空发动机有限责任公司  上海 201306
Effect of Process Parameters and Post-Treatment on Room-Temperature Tensile Properties of GH3536 Superalloy Fabricated by Laser Powder Bed Fusion#br#
引用本文:

王源晨 胡炳利 张剑锋 侯慧鹏 宋竹满 张广平. 成形工艺参数及后处理对激光粉末床熔融成形GH3536合金室温拉伸性能的影响[J]. 金属学报, DOI: 10.11900/0412.1961.2025.00053.

全文: PDF(1919 KB)  
摘要: 成形工艺参数及后处理对激光粉末床熔融(LPBF)成形合金的缺陷/组织特征及力学性能具有显著影响。成形工艺参数的不当选择会在合金内部引入缺陷劣化其力学性能,而适当的后处理可调控合金的缺陷及微观组织,合理设计成形工艺参数及后处理制度对于保障LPBF成形构件的服役可靠性至关重要。因此,为探索优化LPBF成形GH3536合金性能的最佳成形工艺参数及后处理制度设计方案,本工作通过调控激光功率(205~305 W)及扫描速率(700~1200 mm/s)共制备5组不同激光能量密度(39~99 J/mm3)的GH3536合金,并对热处理态及热处理+热等静压态GH3536合金的缺陷/组织特征及室温拉伸性能开展了研究。结果表明,内部缺陷的存在使得39 J/mm3成形热处理态合金的强度及塑性较低且表现出明显的分散性,增大激光能量密度或进行热等静压处理均可使其塑性提升近50%。同时,热等静压处理可使其屈服强度同步提升15.3%。这主要是由于热等静压处理可闭合缺陷,对其强塑性提升效果更为显著;缺陷含量的降低使得60~99 J/mm3成形的热处理态合金的拉伸性能由缺陷和微观组织共同作用转变为由微观组织主导,此时热等静压处理对合金性能的影响效果减弱。热等静压处理后99 J/mm3成形的合金的塑性和屈服强度仅分别提升3.5%和8.4%。
关键词 激光粉末床熔融激光能量密度GH3536拉伸缺陷    
Abstract:Laser powder bed fusion (LPBF) is a typical additive manufacturing technology that offers several technical advantages such as high geometric freedom, few forming processes, and the capability for large-scale customization. It provides a reliable and feasible method for manufacturing complex metal components used in fields such as aerospace, nuclear energy, and new energy. The development of GH3536 alloy fabricated by LPBF is beneficial for improving the design of complex, high-precision components. For alloys fabricated by LPBF, the process parameters and post-treatment conditions influence defect formation, microstructural characteristics, and mechanical properties. Improper selection of process parameters can introduce internal defects into the alloy and deteriorate its mechanical properties. By contrast, appropriate post-treatment can modify the defects and microstructure of the alloy. Therefore, the rational design of process parameters and post-treatment conditions is crucial for ensuring the service reliability of components fabricated by LPBF. However, most studies have investigated the influence of process parameters and post-treatment independently, or first optimized the process parameters of the alloy to minimize defects and then investigated the influence of post-treatment under these optimized process parameters. A comprehensive design approach that considers process parameters and post-treatment simultaneously is required to achieve optimal performance in GH3536 alloy components fabricated by LPBF. In this study, five groups of GH3536 alloys were fabricated under different laser energy densities  by regulating the laser power (205–305 W) and scanning speed (700–1200 mm/s). Two post-treatment conditions were designed: heat treatment and heat treatment followed by hot isostatic pressing (HIP). The combined effects of process parameters and post-treatment on defect formation, microstructural characteristics, and room-temperature tensile properties of GH3536 alloys fabricated by LPBF were comprehensively investigated. The results show that the presence of internal defects leads to relatively low strength and plasticity, as well as a pronounced dispersion in the alloy under heat-treated conditions fabricated at 39 J/mm3. Increasing the laser energy density or performing HIP treatment can enhance its plasticity by ~50%. Meanwhile, HIP also increases its yield strength by ~15.3%, mainly because HIP eliminates internal defects, thereby improving the strength and plasticity of the alloy. When the defect content is reduced, the tensile properties of the heat-treated alloys fabricated at 60–99 J/mm3 transition from being jointly influenced by defects and microstructure to being primarily dominated by microstructural factors. Consequently, the effect of HIP treatment on tensile properties becomes less pronounced. After HIP treatment, the plasticity and yield strength of the alloy fabricated at 99 J/mm3 increase by only 3.5% and 8.4%, respectively.
Key wordsLaser powder bed fusion    Laser energy density    GH3536    Tensile    Defect
收稿日期: 2025-02-27     
ZTFLH:  TG146  
基金资助:国家重点研发计划;上海市科技启明星项目;中国博士后科学基金资助项目;国家资助博士后研究人员计划
[1] 张天宇, 张鹏, 肖娜, 王小海, 刘国强, 杨志刚, 张弛. 奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响[J]. 金属学报, 2025, 61(9): 1353-1363.
[2] 杨帆, 裴世超, 罗新蕊, 陈宇翔, 李宁宇, 常永勤. 6061铝合金搅拌摩擦增材制造显微组织演变及力学性能[J]. 金属学报, 2025, 61(8): 1129-1140.
[3] 罗来马, 魏国庆, 刘祯, 朱晓勇, 吴玉程. 钨材料中缺陷的形成及演化规律[J]. 金属学报, 2025, 61(4): 526-540.
[4] 蒋斌, 张昂, 宋江凤, 黎田, 游国强, 郑江, 潘复生. 镁合金一体化压铸缺陷控制[J]. 金属学报, 2025, 61(3): 383-396.
[5] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
[6] 卫贝贝, 唐斌, 陈晓飞, 张翔, 朱雷, 刘仁慈, 李金山. Ti-(43~45)Al-4Nb-1Mo-0.2B合金轧制过程中显微组织演化及力学响应[J]. 金属学报, 2025, 61(11): 1603-1614.
[7] 王子彧, 陈志勇, 王新, 王清江. Ti2AlNb薄板的织构及其对拉伸性能各向异性的影响[J]. 金属学报, 2025, 61(11): 1625-1637.
[8] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[9] 曹姝婷, 赵剑, 巩桐兆, 张少华, 张健. Cu含量对K4061合金显微组织和拉伸性能的影响[J]. 金属学报, 2024, 60(9): 1179-1188.
[10] 余华, 李昕, 江河, 姚志浩, 董建新. 碳化物特征对GH3536合金冷变形损伤的影响及控制[J]. 金属学报, 2024, 60(4): 464-472.
[11] 刘瑞, 于治, 赵洋, 李晓齐, 喻海龙, 何娟, 聂鹏程, 王春雨, 邰凯平, 刘畅. 柔性、可拉伸变形微型热电器件的设计与集成[J]. 金属学报, 2024, 60(3): 348-356.
[12] 梁恩溥, 徐乐, 王毛球, 时捷. NiAlCu40CrNi3MoV钢中的析出行为及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 201-210.
[13] 张楠, 张海武, 王淼辉. 微米级选区激光熔化316L不锈钢的拉伸力学性能[J]. 金属学报, 2024, 60(2): 211-219.
[14] 张术钱, 马英杰, 王倩, 齐敏, 黄森森, 雷家峰, 杨锐. 热处理调控 α + β 两相钛合金板材的力学及导电性能[J]. 金属学报, 2024, 60(12): 1622-1636.
[15] 唐旭, 张昊, 薛鹏, 吴利辉, 刘峰超, 朱正旺, 倪丁瑞, 肖伯律, 马宗义. 铸态及激光粉末床熔融AlCoCrFeNi2.1 共晶高熵合金的微观组织及力学性能[J]. 金属学报, 2024, 60(11): 1461-1470.