金属学报, 2025, 61(1): 77-87 DOI: 10.11900/0412.1961.2024.00142

综述

高强钢中亚稳奥氏体对断裂韧性影响的研究进展

唐景韬, 姚英杰, 张游游, 吴文华, 李宇博, 陈浩,, 杨志刚

清华大学 材料学院 教育部先进材料重点实验室 北京 100084

Research Progress on the Influence of Metastable Austenite on the Fracture Toughness of High-Strength Steels

TANG Jingtao, YAO Yingjie, ZHANG Youyou, WU Wenhua, LI Yubo, CHEN Hao,, YANG Zhigang

Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

通讯作者: 陈 浩,hao.chen@mail.tsinghua.edu.cn,主要从事金属结构材料的固态相变研究

责任编辑: 肖素红

收稿日期: 2024-05-07   修回日期: 2024-10-16  

基金资助: 国家重点研发计划项目(2022YFE0110800)
国家自然科学基金项目(52201011)
国家自然科学基金项目(51922054)

Corresponding authors: CHEN Hao, professor, Tel:(010)62781646, E-mail:hao.chen@mail.tsinghua.edu.cn

Received: 2024-05-07   Revised: 2024-10-16  

Fund supported: National Key Research and Development Program of China(2022YFE0110800)
National Natural Science Foundation of China(52201011)
National Natural Science Foundation of China(51922054)

作者简介 About authors

唐景韬,男,1997年生,博士生

摘要

超高强度钢中亚稳奥氏体调控是协同提升其强塑性的重要策略。亚稳奥氏体在拉伸变形过程中能够通过形变诱发马氏体相变来延迟颈缩并增强材料的加工硬化能力。在超高强度钢部件轻量化及载荷复杂化的趋势下,迫切需要进一步提升其断裂韧性,在保证强塑性的基础上,如何利用亚稳奥氏体相增韧是当前研究的重点之一。亚稳奥氏体可以通过相变过程及与裂纹的相互作用导致裂纹的偏转/钝化,来提高材料断裂韧性,但相变产生的新鲜马氏体具有本征脆性,同时微观结构中复杂的力学配分行为改变了裂纹尖端的应力状态,导致相变增韧效应的减弱甚至材料的脆化。本文综述了亚稳奥氏体对高强钢断裂韧性影响的研究进展,总结了其增韧及脆化机制,并展望了未来面向协同强韧化的亚稳奥氏体设计及理论研究。

关键词: 亚稳奥氏体; 断裂韧性; 相变

Abstract

Incorporating metastable austenite is the one of the key strategies for achieving synergistic improvement in the strength and ductility of high-strength steels. Through in situ deformation-induced martensitic transformation during tensile loading, metastable austenite can delay necking while enhancing work-hardening capacity. Concurrently, ultrahigh-strength steel components are facing increasing demands in terms of lightweightness and service in complex environments; hence, they will be required to have a higher fracture toughness without compromising strength. Research has focused on incorporating the tougher austenite phase in high-strength steels to improve their fracture toughness and preserve ductility. Metastable austenite contributes to enhanced fracture toughness through transformation toughening and its interactions with cracks, which can deflect or blunt cracks. However, freshly formed martensite, a product of martensitic transformation, can reduce the toughening effect or even deteriorate fracture toughness due to its inherent brittleness and effect on the local stress state. This paper reviews recent research progress on the relationship between metastable austenite and fracture toughness of high-strength steels, examining the toughening and embrittlement mechanisms of the phase. In addition, it outlines future design principles for metastable austenite incorporation in high-strength steels to achieve synergistic improvements in strength and toughness.

Keywords: metastable austenite; fracture toughness; phase transformation

PDF (1646KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

唐景韬, 姚英杰, 张游游, 吴文华, 李宇博, 陈浩, 杨志刚. 高强钢中亚稳奥氏体对断裂韧性影响的研究进展[J]. 金属学报, 2025, 61(1): 77-87 DOI:10.11900/0412.1961.2024.00142

TANG Jingtao, YAO Yingjie, ZHANG Youyou, WU Wenhua, LI Yubo, CHEN Hao, YANG Zhigang. Research Progress on the Influence of Metastable Austenite on the Fracture Toughness of High-Strength Steels[J]. Acta Metallurgica Sinica, 2025, 61(1): 77-87 DOI:10.11900/0412.1961.2024.00142

钢铁材料具有良好的力学性能、耐腐蚀性能及耐磨性能,在基础设施建设、汽车工业、航空航天及兵器工业等领域已有广泛应用[1~5]。自20世纪60年代以来,面向军用航天器及航空飞机的轻量化需求,国际上开发了一系列屈服强度在1380 MPa以上的超高强度钢,并成功应用于飞机起落架、航空引擎发动机轴承及机翼组件[1,3,6]等关键承重部件。依据化学成分,超高强度钢可以分为低合金超高强度钢及高合金超高强度钢。其中依据纳米析出相种类,高合金超高强度钢可以分为以Aermet100为代表的二次硬化钢及以18Ni300为代表的马氏体时效钢。超高强度钢的典型微观组织为回火马氏体+少量亚稳奥氏体的复相组织,细小的碳化物或金属间化合物弥散分布于马氏体基体中[7]。然而,由于材料本征的强塑性矛盾与强韧性矛盾[8,9],以高密度纳米析出相限制位错运动为核心的超高强度钢的强化策略,往往会牺牲其延展性及断裂韧性。因此,如何通过材料设计同时提升超高强度钢的强度与塑韧性是目前超高强度钢发展的关键挑战之一。在超高强度钢的时效热处理过程中,Ni、Cu、C等稳定奥氏体的合金元素会发生偏聚[10,11],促使在回火马氏体基体中形成具有较高热稳定性的逆转变亚稳奥氏体,这部分奥氏体相较于回火马氏体基体具有更好的本征塑韧性。因此,通过调控亚稳奥氏体有望实现超高强度钢的强度-塑性-韧性协同提升。在传统铸造-均质化-时效工艺制备的超高强度钢中,亚稳奥氏体含量一般控制在5% (体积分数,下同)以下[12~14],在保证超高强度的同时可显著提升超高强度钢的断裂韧性。亚稳奥氏体形成方式包括均质化淬火后保留的少量残余奥氏体及时效过程中产生的逆转变奥氏体。均质化淬火后的马氏体时效钢一般不含残余奥氏体,中/低碳二次硬化钢中存在少量的残余奥氏体[15~17],部分高碳模具钢(如AISI W1)可保留含量超过10%的残余奥氏体[18]。在峰值时效温度热处理的马氏体时效钢中一般不发生奥氏体逆转变[19],但在二次硬化钢中,在马氏体板条界处有少量逆转变薄膜状亚稳奥氏体产生[20]。总体而言,在峰值时效条件下,传统工艺制造的超高强度钢中往往只含有少量亚稳奥氏体。增材制造具有快速熔凝、微区冶金的工艺特点[21],增材制造超高强度钢合金元素的偏聚及非平衡相变过程导致亚稳奥氏体的形成机制显著不同于传统铸造工艺制造的超高强度钢。选区激光熔化制备的18Ni300马氏体时效钢通过形成富Ti、Mo元素的胞状结构显著增加奥氏体的逆转变驱动力[10],在峰值时效后可以获得10%左右的亚稳奥氏体相,相较于传统固溶-时效工艺制备的马氏体时效钢大幅提高,进而大幅提升其断裂韧性,表明新一代超高强度钢中奥氏体的合理设计将为其塑韧性调控开辟更大的空间。由于奥氏体相本身屈服强度较低,一般认为过多的奥氏体相可能会导致超高强度钢的屈服强度降低[22],但增材制造的马氏体时效钢反而比不含奥氏体的锻态马氏体时效钢具有更高的强度,一方面可能是由于合金元素的大量偏聚及较小的晶粒尺寸提升了亚稳奥氏体的稳定性[10,23],另一方面可能是由于马氏体骨架与胞状奥氏体网络的协调变形提升了其强度,但其微观力学响应机制目前仍不明确。

亚稳奥氏体协同提升强塑性机制主要源于其加载过程中的马氏体相变,由形变产生的剪切带相交将为马氏体相变提供形核位点[24,25],在变形过程中亚稳奥氏体逐步转变为热力学上更稳定的马氏体,该过程被称为相变诱发塑性(transformation-induced plasticity,TRIP)效应[26,27]。TRIP效应可以持续提供加工硬化,通过马氏体相变的体积膨胀及应变的再配分协同提升强度与塑性。自从Zackay等[28]和Gerberich等[29]设计出具有TRIP效应的高合金全奥氏体不锈钢以来,淬火-配分钢、中锰钢及无碳化物贝氏体钢[30~33]等多相高强度钢中也通过引入亚稳奥氏体相实现了强塑性协同提升。

超高强度钢在航空航天器轻量化方面具有重大战略意义,然而在空天环境服役时,超高强度钢构件存在循环受力及极端载荷的挑战[34],具有产生微裂纹的倾向,因此超高强度钢的断裂韧性是其关键服役性能之一。在裂纹扩展前,裂纹尖端的耗散能量及释放应力的能力决定了材料的断裂韧性,然而强度的提升往往牺牲了裂纹尖端通过位错滑移释放应力集中的能力,即强度-韧性之间存在倒置关系[35~37],部分先进高强钢与超高强度钢的强韧性倒置关系如图1[38~52]所示。由于TRIP效应需要吸收能量,且奥氏体相作为软相具有较高的本征韧性,因此增加亚稳奥氏体含量是协同实现强韧化的重要手段[43,45,53~55],但也有研究表明亚稳奥氏体的增韧效应可能会被新鲜马氏体的脆性[56,57]或奥氏体逆转变时伴生的析出相粗化[58]所抵消。总体而言,目前对亚稳奥氏体及其相变对断裂韧性的影响尚存争议,且其增韧机制与脆化效应均以定性认知为主。本文对亚稳奥氏体相变增韧理论及脆化效应等方面进行论述,并对现有理论及未来面向强韧化的奥氏体设计原则进行总结与展望。

图1

图1   部分高强度钢强度-断裂韧性的Ashby图[38~52]

Fig.1   Ashby plot showing the strength-ductility trade-off of some high-strength steels (For example: twinning-induced plasticity(TWIP) steel[38,39], duplex steel[40-42], transformation-induced plasticity(TRIP)-aided steel[43,44], secondary hardening steel[45-49], and Maraging steel[50-52])


1 亚稳奥氏体相变增韧机制

亚稳相的相变过程可以显著增加材料的韧性,例如ZrO₂陶瓷中的四方相-单斜相转变[59~62],斯石英的非晶化转变[63]和TRIP钢中的马氏体相变[29,55,64,65],这一效应被称之为相变增韧。相变增韧理论认为,伴随着裂纹的扩展,裂纹附近会同步产生相变“过程区”的扩展。在过程区内,由于应力高于相变所需的应力阈值,亚稳相将产生相变,而在扩展区外则不发生相变。目前定量解释相变增韧效应的机理分为能量吸收理论[64]和裂纹尖端钝化理论[66],前者认为裂纹尖端的相变过程中需要应力做额外的功,延缓了裂纹的扩展;后者认为裂纹尖端产生的相变体积膨胀改变了局部应力状态,相变区在裂纹尖端的压应力延缓了裂纹的扩展。

1971年,Antolovich和Singh等[64]在研究TRIP钢的增韧时提出了能量吸收理论。该理论将裂纹尖端的相变区近似处理为半长轴为h,半短轴为βh的椭圆形(图2a),该区域在发生马氏体相变时需要吸收的能量(ΔUA→M)为:

ΔUAM=σMεIS3πβh2tV¯M
(1)

图2

图2   不同相变增韧理论采用的相变区域,相变增韧理论预测的裂纹扩展阻力曲线,及增韧效应随临界应力的变化

Fig.2   Transformation zone schematics of energy adsorption theory (a) and crack tip shielding theory (b), crack propagation resistance curve predicted by transformation toughening theory (c), and the dependence of toughening behavior on the critical transformation stress (d) (h—semi-major axis of the elliptical transformation zone, βh—semi-minor axis of the elliptical transformation zone, r—distance between the edge of transformation zone and the crack tip, θ—angle between the line which originates from the crack tip connecting the transformation-zone edge, and the crack plane, ΔKI—increment of the stress intensity factor resulted by phase transformation, ΔKIC—critical value of ΔKI, Δa—crack length, KIC—type I stress intensity factor, σM—critical stress for martensitic transformation)


式中,σM为产生马氏体相变的临界应力,εIS为相变过程中产生的剪切不变量,t为样品的厚度,V¯M为相变区内发生相变的微观组织体积分数。将相变的诱发视为与塑性变形一致,h又可以表示为样品裂纹尖端的应力强度因子(KI)的函数[64]

h=αKIσM2
(2)

式中,α为比例系数。马氏体相变对裂纹能量释放速率的增量(ΔGICAM)为单位厚度下相变吸收能量对裂纹长度(c)的偏导数:

ΔGICAM=1t·ΔUAMc
(3)

将试样的几何尺寸及式(1)代入式(3)中可以得到[64]

ΔGICAM=AcFcw
(4)

式中,A为包含马氏体相变晶体学及特征、外加载荷、试样宽度(w)及外加载荷的参数,F(c / w)为取决于试样几何结构的特征函数。结合上述结果及线弹性断裂理论,存在马氏体相变时的应力强度因子增量(ΔK)为:

ΔK=GIC+ΔGICAM-GICE1-ν2
(5)

式中,E为Young's模量,ν为Poisson比,GIC为不产生相变时的本征临界能量释放速率。

20世纪80年代,McMeeking和Evans[66]在研究陶瓷的马氏体相变增韧时提出了裂纹尖端钝化理论,认为马氏体相变引起的局部应变再分配将抑制裂纹的扩展。不同于能量吸收理论采取的椭圆近似相变区,McMeeking和Evans[66]采用了Irwin[67,68]对于塑性区边界的“蝴蝶型”解,如图2b所示。其相变区边界的极坐标方程为[67,68]

r=833wTr·cos2θ2
(6)

式中,wTr为相变区的宽度,r为相变区边界与裂纹尖端的距离,θ为相变区边界与裂纹尖端连线与裂纹平面之间的夹角。将相变区域视为Eshelby等效夹杂时[69],相变产生的应力(T)集中于相变区边界,其方向及大小为[66]

T=nCeTr
(7)

式中, n 为相变区边界的法线方向, C 为弹性张量, eTr为相变产生的应变张量。由于相变产生的应力引起的裂纹尖端应力强度因子增量(ΔKI)为[70,71]

ΔKI=SPThwdS
(8)

式中,SP为相变区的边界, hw为平面应变下的裂纹尖端权函数。将式(6)及(7)代入式(8),可以得到在裂纹未扩展前由于相变产生的应力强度因子增量(ΔKI)为[66]

ΔKI=I123π3141-ν1-2νEV¯MeTrwTr
(9)

式中,eTr为张量 eTr的迹,Iθ的积分函数。在裂纹开始扩展时,ΔKI随着裂纹扩展长度的函数关系为[66]

ΔKI=κΔcwTr, νEV¯MeTrwTr
(10)

式中,Δc为裂纹的扩展长度,κ(ΔcwTr, ν)为与裂纹长度及材料Poisson相关的函数。ΔKI随裂纹扩展的函数关系如图2c所示,在κ(ΔcwTr, ν)趋于稳态时的ΔKI即为临界应力强度因子增量(ΔKIC),其值为[66]

ΔKIC=-0.221-νEV¯MeTrwTr
(11)

可以看出,V¯MeTrwTr均可改变材料的断裂韧性,并且在陶瓷中的增韧规律符合式(11)的预测规律[59,63]。值得注意的是,在裂纹未扩展时,即Δc = 0时,κ(ΔcwTr, ν) = 0。这也就意味着在裂纹未扩展时,相变虽然改变了裂纹尖端的应力场,但对应力强度因子没有贡献。这不同于能量吸收理论,在裂纹未产生扩展前,相变区域的存在即会吸收能量,即使裂纹未产生扩展,相变也会产生固有的增韧效应。

根据相变增韧理论,材料的I型临界应力强度因子(KIC)σM的关系如图2d所示。随着σM的增加,KIC呈现先增加后减小的趋势。定性而言,σM的增加会使裂纹扩展的阻力上升,但同时也会使相变区的宽度减小,2者的竞争关系使得相变的增韧效应存在极大值。

2 亚稳奥氏体的脆化与韧化机制竞争

除相变过程导致的增韧作用,亚稳奥氏体可以通过与裂纹的相互作用偏转裂纹或钝化裂纹,增加断裂韧性。裂纹的偏转主要是由于相变产生新鲜马氏体,新鲜马氏体的板条块边界、板条束边界对局部塑性变形与裂纹扩展具有较强的阻碍作用,当裂纹前端扩展到上述区域时将发生偏转以减小其扩展阻力[72~74]。裂纹的偏转会使平面裂纹变为非平面裂纹,将I型开裂(张开型)转变为I型与III型(撕开型)混合开裂。相较于张开型裂纹,混合开裂需要更高的局部应力水平以使裂纹扩展[35,75]。除此之外,奥氏体相具有较高的本征韧性,可以通过对裂纹的钝化使超高强钢断裂韧性增加。当裂纹从较脆基体相(裂纹以Griffith解理模式扩展)扩展到较韧的第二相(裂纹通过位错的释放扩展)时,由于释放应变机制的变化,裂纹尖端位错释放速率大幅增加[76],导致裂纹尖端开口位移增加,局部应力集中程度也将随之降低[36]。因此,亚稳奥氏体及其相变过程中与裂纹的相互作用被认为是重要的钢铁增韧机制[77~80]

不同于TRIP效应,尽管亚稳奥氏体可以通过相变过程及与裂纹的相互作用提升断裂韧性,但由于裂纹尖端微观组织复杂的力学响应机制及相变产生的新生马氏体的本征脆性,亚稳奥氏体也可能会导致韧化效应减弱甚至产生脆化效应。一方面,裂纹尖端处亚稳奥氏体的塑性变形及应力/应变配分改变了局部应力状态与应力梯度,导致裂纹扩展模式发生改变;另一方面,相较于相变前的奥氏体,新鲜马氏体中有较高的位错密度与过饱和C浓度,导致其本征韧性较差,因此在新鲜马氏体附近更容易产生新生裂纹,加速主裂纹的快速扩展。

应力三轴度是裂纹尖端的静水压力与Mises等效应力的比值,反映了静水压力与偏应力之间的竞争关系。当应力三轴度大于2~3时,更易于发生脆性的解理断裂;反之裂纹将以孔洞聚集方式扩展[81]。在含亚稳奥氏体的钢中,裂纹尖端应力三轴度与亚稳奥氏体中的C含量有关。Lacroix等[57]通过调控C含量(分别为0.15%、0.3%及0.45%,质量分数)及碳配分工艺(TRIP1工艺为410 ℃退火6 min, TRIP2工艺为310 ℃退火4 h)得到具有不同奥氏体含量和稳定性的TRIP钢。相较于TRIP2工艺,高温短时退火的TRIP1工艺可以得到更多的亚稳奥氏体,但亚稳奥氏体力学稳定性较低,具有较快的转变动力学。对不同C含量及TRIP工艺所得样品采用各向同性硬化模型,通过数值模拟方法[82]可以得到在紧凑拉伸加载过程中沿厚方向应变ε33ct (该值与应力三轴度成反比)的分布云图(图3[57])。一方面,尽管TRIP1工艺中存在较多且不稳定的亚稳奥氏体,可以显著提升样品的均匀变形能力和塑性,但TRIP1工艺处理样品在加载过程中裂纹尖端应力三轴度更大,增大了空洞形成的概率与长大速率[83],反而降低了样品的断裂韧性;另一方面,在相同的TRIP工艺下,对于不同C含量的样品,随着C含量的增加,应力的三轴度将进一步增加,因此其断裂韧性总体呈下降趋势。

图3

图3   不同相变诱发塑性(TRIP)工艺及C含量下裂纹尖端应变三轴度的分布云图[57]

Fig.3   Contour maps of strain triaxiality distributions exposed to different TRIP treatments and with varying carbon concentrations[57] (ε33ctthrough-thickness strain, I'—axis: horizontal distance from the crack tip, h'—vertical distance from the crack tip)


除了应力状态的改变,新鲜马氏体的脆化作用也是含亚稳奥氏体钢韧性降低的原因。相变产生的新鲜马氏体较母相奥氏体更脆,同时,由于马氏体相变的体积膨胀,在裂纹尖端附近的马氏体相变导致应力高度集中,更容易在裂纹尖端附近产生新生的次生裂纹,主裂纹将通过与次生裂纹的桥接继续扩展,降低了其扩展所需的能量,导致材料总体呈现脆化效应。Lacroix等[57]研究表明,随着C含量的增加,亚稳奥氏体的含量呈现上升趋势,但奥氏体的稳定性下降,奥氏体转变为新鲜马氏体的速率更快,这部分新鲜马氏体与增加的应力三轴度同时导致了断裂韧性的降低。一方面,新鲜马氏体具有较强的本征脆性,更容易发生解理断裂(图4a[57]);另一方面,由于新鲜马氏体的生成,其与周围马氏体之间的界面也将被削弱,可能会发生马氏体-马氏体沿晶断裂(图4b[57])和马氏体-基体沿晶断裂(图4c[57]d[56])。除了界面的弱化,Hu等[56]通过微观数字图像相关技术揭示了新生马氏体与基体之间同时存在较高应变梯度,促进了马氏体-基体之间的裂纹萌生。

图4

图4   亚稳奥氏体相变后新生马氏体导致的裂纹[56,57]

Fig.4   Cracking as a consequence of the fresh martensite produced by retained austenite phase transformation

(a) martensite cleavage[57]

(b) martensite-martensite interfacial cracking[57] (c, d) martensite-matrix interfacial cracking[56,57] (Where orange arrows in Fig.4d point to martensite-matrix interface decohesion while green arrows show martensite cracking)


3 亚稳奥氏体成分和结构对断裂韧性的影响

综合上述,为优化超高强度钢的断裂韧性,亚稳奥氏体的调控应有如下规律:① 亚稳奥氏体的体积分数决定了相变增韧的强度,但相变产生的新鲜马氏体过多反而会引入高密度的次生裂纹,导致基体脆化,因此亚稳奥氏体的体积分数应有最优值;② 优化亚稳奥氏体对裂纹的钝化及偏转作用可以在相变增韧的基础上进一步增加断裂韧性;③ 减小新鲜马氏体的本征脆性,并降低马氏体与基体之间的应变梯度,抑制裂纹在新鲜马氏体附近的形核及快速萌生的趋势。亚稳奥氏体的成分、形貌、尺寸及分布等特征决定了材料强度、塑性等性能,但这些特征对于上述3条规律的影响尚缺乏系统研究,目前仅在形貌与C含量分布调控方面有所报道。

首先是奥氏体形貌的调控。现有研究[79,84]表明,相较于块状奥氏体,薄膜状奥氏体对断裂韧性具有更强的提升能力。一方面,薄膜状奥氏体可以更有效地偏转裂纹或遏制裂纹扩展;另一方面,Zhang等[85]通过晶体塑性有限元模拟表明,由薄膜状奥氏体转变的新鲜马氏体可以在不显著提升基体应力的情况下,将塑性变形配分到基体中,避免应力集中。薄膜状奥氏体与块状奥氏体的区别不仅仅局限于形貌,其C含量和合金元素含量均有较大差别[86],此外,薄膜状奥氏体相变晶体学及转变动力学不同于块状奥氏体,因此其对裂纹尖端的应力钝化作用也会存在差异,但目前仍缺乏相关报道。

其次是奥氏体C含量的调控。Wu等[77]通过改变奥氏体化后碳配分的温度得到了具有不同C含量及奥氏体含量的样品,不同样品的裂纹能量释放速率(GICγ)及C含量如图5[77]所示。可以看出,C含量与样品的断裂韧性呈反比。在该材料体系中,当奥氏体中C含量降低时,材料中的亚稳奥氏体含量也会上升,导致更强的相变增韧效应。作者通过相变增韧的能量吸收理论计算得到了对应样品的亚稳奥氏体对断裂韧性的贡献,如图中紫色线所示。在假定奥氏体转变动力学参数不变的情况下,相变吸能理论只涉及了奥氏体体积分数。在低C含量的情况下,实验曲线与理论曲线符合很好,这也证明了较高的奥氏体体积分数是导致材料高韧性的重要原因。而在较高的C含量下,实验曲线与理论曲线对应关系变差,一方面可能是高C含量的新鲜马氏体较脆,另一方面可能是高C含量的亚稳奥氏体在加载下应变三轴度更强,更容易导致空洞的形成与快速长大[57]。目前研究仅仅证实了奥氏体中C含量与断裂韧性之间存在反比关系,并不能解耦奥氏体的体积分数和C含量对断裂韧性的影响。

图5

图5   在不同淬火-配分工艺下相变贡献的裂纹能量释放速率(GICγ),根据相变吸能理论计算的GICγ及奥氏体平均C含量[77]

Fig.5   Changes of energy release rate (GICγ) due to phase transformation, corresponding evaluated GICγ from energy adsorption theory, and the carbon concentration in retained austenite varying with quenching & partitioning process[77] (The sample axis represents the quenching & partitioning parameters, e.g. QP260(60) indicates partitioning at 260 oC for 60 min)


总体而言,目前面向高韧性的亚稳奥氏体成分和结构设计理论尚不清晰,其关键点在于阐明脆化效应与韧化效应之间的竞争关系。① 新鲜马氏体的脆化效应与裂纹偏转之间的竞争关系。虽然新鲜马氏体的板条块及板条束边界在裂纹扩展前端可以偏转裂纹,但新鲜马氏体与基体之间的界面较为薄弱[56],当裂纹尖端扩展到较薄弱的界面时由于阻力较小而快速生长,导致整体的脆化效应。② 新鲜马氏体的脆化效应与裂纹钝化之间的竞争关系。当新鲜马氏体-基体界面较弱或特定晶面解理断裂倾向很大时,裂纹在钝化之前就会快速扩展。Wang和Huang[87]研究提出,如果新鲜马氏体的流变应力较低,则裂纹可以发生钝化;反之如果新鲜马氏体-基体之间的界面强度较低,则裂纹不发生钝化,将沿晶界处快速扩展,因此TRIP效应能否增韧取决于马氏体的流变应力与新鲜马氏体-基体之间的强度匹配度。③ 亚稳奥氏体的微观结构与裂纹偏转/钝化能力之间的关联。不同形貌、尺寸的奥氏体在相变时产生的应力状态差异较大,对裂纹的偏转/钝化能力也不尽相同。虽然目前普遍认为薄膜状亚稳奥氏体对裂纹的钝化能力更强,但尚缺乏系统的研究。在超高强度钢中,裂纹钝化能力是决定断裂韧性的重要因素之一。Handerhan和Garrison[88]在研究HP9-4-20二次硬化钢时,通过调控回火温度及时间得到可以将裂纹平滑钝化(即裂纹尖端为圆弧过渡)及顶点钝化(Blunting to vertices,裂纹尖端以方形或三角形过渡)的不同样品,在具有相同碳化物析出密度及间距的情况下,相较于平滑钝化的直接淬火态样品,顶点钝化的时效样品可以将临界裂纹尖端张开位移增加约一倍。

4 结论与展望

马氏体基超高强度钢是航空航天等领域进一步实现轻量化的关键材料,其断裂韧性是在复杂载荷下保证安全性的重要服役性能。亚稳奥氏体相的调控对突破超高强度钢强韧性极限具有重要意义,然而钢铁材料中亚稳奥氏体对断裂韧性的影响尚有争议。本文综述了亚稳奥氏体对断裂韧性影响的研究进展,总结了其增韧及脆化机制,主要结论如下。

(1) 钢铁中的亚稳奥氏体可以通过相变过程和与裂纹的相互作用实现材料韧化,但相变后的新鲜马氏体会作为新生裂纹源的形核位点或改变裂纹尖端应力的状态,反而加速裂纹的扩展,进而造成材料脆化。优化亚稳奥氏体的增韧效应关键在于定量阐明相变增韧机制与脆化机制之间的竞争关系。

(2) 相变增韧机制是目前较为重要的量化亚稳奥氏体增韧的理论工具,依据相变对裂纹扩展的阻力,可以分为能量吸收理论和裂纹尖端钝化理论,前者认为裂纹在扩展前需要吸收相变过程中的能量,后者认为相变体积膨胀产生的应力场增加了裂纹扩展的阻力。能量吸收理论认为裂纹未产生扩展前,相变增加裂纹扩展阻力,但裂纹尖端钝化理论认为此时相变不会对裂纹扩展阻力产生增量。

(3) 亚稳奥氏体脆化主要是因为新鲜马氏体处萌生的裂纹与相变过程中产生的应力再分布。相变后的新鲜马氏体不仅存在本征脆性,且界面处也比基体更加薄弱,强化新鲜马氏体-基体界面及调控亚稳奥氏体在应力状态下的响应对减弱相变后的脆化效应至关重要。

亚稳奥氏体的设计及调控是决定超高强度钢断裂韧性的重要因素,其关键在于如何优化其相变增韧及与裂纹相互作用的同时抑制新鲜马氏体的脆化机制,因此迫切需要在现有理论基础上取得突破,量化亚稳奥氏体及其相变前后裂纹尖端的微观力学行为,其关键点在如下2个方面。

(1) 结合微观组织及亚稳奥氏体转变动力学的微观力学模型。现有的相变增韧理论认为相变由临界应力诱导,即局部的临界应力达到阈值时就会产生瞬时转变,然而超高强度钢中的马氏体相变过程多为应变诱导,塑性变形的累积效应对亚稳奥氏体的相变动力学存在影响;另一方面,相变增韧理论认为相变仅发生于“过程区”之内,“过程区”内的宏观应力大于马氏体相变临界应力,这一近似无法预测亚稳奥氏体的形貌和分布对于断裂韧性的作用。因此,发展结合马氏体相变动力学与代表性微观结构的有限元模型(例如代表性体积单元)对于构建亚稳奥氏体的设计原则至关重要。

(2) 新鲜马氏体及马氏体-基体界面的韧化机制。在超高强度钢时效过程中,奥氏体逆转变与纳米析出相竞争演化,C元素及合金元素的配分使亚稳奥氏体的化学成分具有很大的调控空间。一方面,新鲜马氏体的本征韧性与其化学成分息息相关,化学成分的改变对裂纹尖端位错的运动及增殖行为有很强的影响[89];另一方面,亚稳奥氏体的化学成分也会影响马氏体相变的驱动力与晶体学特征,从而进一步改变相变后的应力再分配过程。耦合先进的元素表征技术,阐明C、Ni等合金元素在奥氏体、马氏体以及界面之间的配分行为,结合第一性原理计算定性阐明界面强度是进一步理解新鲜马氏体及马氏体-基体界面断裂性质的关键。

参考文献

Garrison W M.

Ultrahigh-strength steels for aerospace applications

[J]. JOM, 1990, 42(5): 20

[本文引用: 2]

Zhao B, Xu G X, He F, et al.

Present status and prospect of ultra high strength steel applied to aircraft landing gear

[J]. J. Aeronaut. Mater., 2017, 37(6): 1

赵 博, 许广兴, 贺 飞 .

飞机起落架用超高强度钢应用现状及展望

[J]. 航空材料学报, 2017, 37(6): 1

Luo H W, Shen G H.

Progress and perspective of ultra-high strength steels having high toughness

[J]. Acta Metall. Sin., 2020, 56: 494

DOI      [本文引用: 1]

Ultra-high strength steels have been widely used in the critical engineering structures in both military and civilian applications due to the combination of ultra-high strength and excellent toughness. In this paper, firstly, the typical ultra-high strength steel grades that have been employed were introduced, and their compositions, mechanical properties, application and histories of development were summarized with the emphasis on their microstructures and strengthening/toughening mechanism; secondly, the latest progress on the emerging ultra-high strength steel grades was reviewed, including their compositions, microstructures, strengthening mechanism and mechanical properties; thirdly, the newly emerging demands on replacing the currently employed ultra-high strength steels in China were defined, including steels for low-density but ultra-strong armors, the large ball grinding mill, cutters of tunnel boring machine and high pressure fracturing pump; finally, recent research results on ultra-high strength and high-toughness medium Mn steel were presented, which overcame the trade-off of strength and toughness to a greater extent; on this basis, some suggestions were put forward for the future development of these steel grades to meet the urgent national demands.

罗海文, 沈国慧.

超高强高韧化钢的研究进展和展望

[J]. 金属学报, 2020, 56: 494

DOI      [本文引用: 1]

超高强韧钢同时拥有超高强度和优良韧性,因而在国防和民用工程机械领域中广泛应用。本文首先综述了各类型传统超高强韧合金钢的典型钢种、成分、性能及应用和发展历程,并重点阐述了各典型钢种的组织和强韧化机理;然后介绍了近年所研发的具有代表性的新型超高强韧钢的成分、组织、强韧化机理及力学性能;接着梳理了我国近年来由于快速发展的经济需求和地理、资源等特点,出现了对现役超高强韧钢进行升级换代的迫切需求,包括新型轻质装甲防护钢、大型球磨机用钢、高山隧道挖掘的盾构机刃具用钢以及石油工程机械中的高压压裂泵用钢等;最后介绍了作者团队近期在超高强韧钢的一些最新研究成果,并据此提出超高强韧钢未来发展的思路。

Gupta M K, Singhal V.

Review on materials for making lightweight vehicles

[J]. Mater. Today Proc., 2022, 56: 868

Yi H L, Sun L, Xiong X C.

Challenges in the formability of the next generation of automotive steel sheets

[J]. Mater. Sci. Technol., 2018, 34: 1112

[本文引用: 1]

Li J H, Zhan D P, Jiang Z H, et al.

Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: A review

[J]. J. Mater. Res. Technol., 2023, 23: 172

[本文引用: 1]

Wang L J, Cai Q W, Yu W, et al.

Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel

[J]. Acta Metall. Sin., 2010, 46: 687

[本文引用: 1]

王立军, 蔡庆伍, 余 伟 .

1500 MPa级低合金超高强钢的微观组织与力学性能

[J]. 金属学报, 2010, 46: 687

DOI      [本文引用: 1]

设计了一种新型1500 MPa级Si-Mn-Cr-Ni-Mo多组元系低合金超高强度结构钢, 对比研究了控轧+控冷(TMCP)、控轧+空冷、控轧+直接淬火、控轧+直接淬火+250 ℃回火4种不同工艺对其微观组织和力学性能的影响. 结果表明: 直接淬火态钢板抗拉强度最高, 可达1890 MPa, 屈服强度为1280 MPa,  延伸率为13\%; 250 ℃回火30 min后抗拉强度降低为1820 MPa, 而屈服强度升高为1350 MPa, 分析认为这归因于位错亚结构的回复软化过程与残余奥氏体分解为马氏体、析出ε-碳化物强化机制的综合作用; 空冷与TMCP工艺获得板条贝氏体+马氏体+少量残余奥氏体的复相组织, 贝氏体分割马氏体板条束, 使实验钢具有良好的强塑性. 低碳马氏体相变过程存在C扩散现象. 研究发现, 回火过程不仅包含残余奥氏体分解, 也包含C从马氏体或贝氏体向奥氏体的分配过程. 证明了立方结构的析出粒子在奥氏体中形核, 在整个冷却过程长大、粗化, 而相变后的马氏体或贝氏体未出现大量第二相析出核心.

Ritchie R O.

Toughening materials: Enhancing resistance to fracture

[J]. Philos. Trans. Roy. Soc., 2021, 379A: 20200437

[本文引用: 1]

Lu K.

Making strong nanomaterials ductile with gradients

[J]. Science, 2014, 345: 1455

DOI      PMID      [本文引用: 1]

Yao Y J, Fan L Y, Ding R, et al.

On the role of cellular microstructure in austenite reversion in selective laser melted maraging steel

[J]. J. Mater. Sci. Technol., 2024, 184: 180

DOI      [本文引用: 3]

Cellular microstructure is a unique feature in alloys fabricated by selective laser melting (SLM). Abundant efforts have been made to reveal the formation mechanism of cellular microstructures and its influences on mechanical performances, while its potential role in microstructure architecting during post-heat treatment is rarely explored. In this work, we investigated the features of cellular microstructures in an SLM-fabricated 18Ni(300) steel and revealed how this microstructure influences austenite reversion upon aging. Segregation of Ti and Mo is experimentally detected at cell boundaries. It is interestingly found that a distinctive reverted austenite network forms rapidly along cell boundaries during aging, whereas much less austenite is found in conventionally treated 18Ni(300) steels. The rapid austenite reversion in SLM-fabricated material proceeds mainly via the growth of retained austenite on cell boundaries while the nucleation and growth of new austenite grains is negligible. Phase-field simulations suggest austenite grows in a fast, partitionless manner along cell boundaries where the chemical driving force for austenite reversion is substantially enhanced by Ti and Mo segregations, but in a sluggish, partitioning manner towards cell interiors. Contrary to conventional views that austenite fraction should be confined to avoid strength reduction, current SLM-fabricated 18Ni(300) steel containing ∼13% cellular austenite is found to have higher tensile strength compared to its counterparts with negligible austenite. The design of austenite also shows its potential to enhance fracture toughness. The current study demonstrates that cellular structures could substantially alter austenite reversion behavior, providing a new route for microstructure architecting in additively manufactured steels.

Wang B, Niu M C, Wang W, et al.

Microstructure and strength-toughness of a Cu-contained maraging stainless steel

[J]. Acta Metall. Sin., 2023, 59: 636

DOI      [本文引用: 1]

An increase in strength often leads to a decrease in the ductility and toughness of maraging stainless steels; this phenomenon is known as the strength-ductility/toughness trade-off dilemma in structural materials. Some studies have found that the introduction of submicro/nanometer-sized retained or reverted austenite could mitigate the strength-ductility/toughness trade-off of high-strength maraging stainless steels. In this work, a novel strategy to accelerate austenite reversion by Cu addition in a Fe-Ni-Mo-Co-Cr maraging stainless steel was studied. In addition, the aging behavior and its effects on the mechanical properties of a Cu-containing Fe-Cr-Co-Ni-Mo maraging stainless steel were systematically studied. Transmission electron microscope characterizations showed that Cu- and Mo-rich phases precipitated from the steel matrix in sequence during the aging process; more specifically, a part of Mo-rich phase nucleated at the Cu-rich phase and then grew. Moreover, along with the segregation of Cu and Ni, reverted austenite was formed gradually. With an increase in the aging time, the stability of the reverted austenite increased, resulting in a substantial increase in its toughness. After aging for 90 h, the yield and tensile strengths of the steel reached 1270 and 1495 MPa, respectively, and the impact energy and fracture toughness were 81 J and 102 MPa·m1/2, respectively, showing an excellent match of strength and toughness compared with commercial maraging stainless steels.

王 滨, 牛梦超, 王 威 .

含Cu马氏体时效不锈钢的组织与强韧性

[J]. 金属学报, 2023, 59: 636

[本文引用: 1]

Kempen K, Yasa E, Thijs L, et al.

Microstructure and mechanical properties of selective laser melted 18Ni-300 steel

[J]. Phys. Procedia, 2011, 12: 255

[本文引用: 1]

Shi X H, Zeng W D, Zhao Q Y, et al.

Study on the microstructure and mechanical properties of Aermet 100 steel at the tempering temperature around 482 oC

[J]. J. Alloys Compd., 2016, 679: 184

Zhang Y P, Zhan D P, Qi X W, et al.

Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel

[J]. Mater. Charact., 2018, 144: 393

[本文引用: 1]

Thomas R L S, Li D M, Gangloff R P, et al.

Trap-governed hydrogen diffusivity and uptake capacity in ultrahigh-strength Aermet 100 steel

[J]. Metall. Mater. Trans., 2002, 33A: 1991

[本文引用: 1]

Jatczak C F.

Retained austenite and its measurement by X-ray diffraction

[EB/OL]. Section 2, Trans.SAE, InternationalSAE, 1980: 1657

Wang H L, Zhang J, Huang J T, et al.

The evolution of a microstructure during tempering and its influence on the mechanical properties of AerMet 100 steel

[J]. Materials, 2023, 16: 6907

[本文引用: 1]

Vander Voort G F.

Metallographic techniques for tool steels

[A]. Vol.9, ASM Handbook[M]. Material Park, OH: ASM International, 2004, 644

[本文引用: 1]

Habiby F, ul Haq A, Khan A Q.

Influence of austenite on the coercive force, electrical resistivity and hardness of 18% Ni maraging steels

[J]. Mater. Des., 1992, 13: 259

[本文引用: 1]

Ayer R, Machmeier P M.

Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100

[J]. Metall. Trans., 1993, 24A: 1943

[本文引用: 1]

Bajaj P, Hariharan A, Kini A, et al.

Steels in additive manufacturing: A review of their microstructure and properties

[J]. Mater. Sci. Eng., 2020, A772: 138633

[本文引用: 1]

Sun D B, Wang H, An X G, et al.

Quantitative evaluation of the contribution of carbide-free bainite, lath martensite, and retained austenite on the mechanical properties of C-Mn-Si high-strength steels

[J]. Mater. Charact., 2023, 199: 112802

[本文引用: 1]

Wang J J, Van Der Zwaag S.

Stabilization mechanisms of retained austenite in transformation-induced plasticity steel

[J]. Metall. Mater. Trans., 2001, 32A: 1527

[本文引用: 1]

Olson G B, Cohen M.

Kinetics of strain-induced martensitic nucleation

[J]. Metall. Trans., 1975, 6A: 791

[本文引用: 1]

Olson G B, Cohen M.

A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation

[J]. Metall. Trans., 1976, 7A: 1897

[本文引用: 1]

Soleimani M, Kalhor A, Mirzadeh H.

Transformation-induced plasticity (TRIP) in advanced steels: A review

[J]. Mater. Sci. Eng., 2020, A795: 140023

[本文引用: 1]

Bleck W, Guo X F, Ma Y.

The TRIP effect and its application in cold formable sheet steels

[J]. Steel Res. Int., 2017, 88: 1700218

[本文引用: 1]

Zackay V F, Parker E R, Fahr D, et al.

The enhancement of ductility in high-strength steels

[J]. Trans. Am. Soc. Met., 1967, 60: 252

[本文引用: 1]

Gerberich W W, Hemmings P L, Zackay V F.

Fracture and fractography of metastable austenites

[J]. Metall. Trans., 1971, 2: 2243

[本文引用: 2]

Tan X D, Ponge D, Lu W J, et al.

Joint investigation of strain partitioning and chemical partitioning in ferrite-containing TRIP-assisted steels

[J]. Acta Mater., 2020, 186: 374

[本文引用: 1]

Hu B J, Zheng Q Y, Lu Y, et al.

Recrystallization controlling in a cold-rolled medium Mn steel and its effect on mechanical properties

[J]. Acta Metall. Sin., 2024, 60: 189

DOI     

Owing to the excellent combination of specific strength and ductility, medium Mn steels (MMSs) with Mn contents of 3%-12% (mass fraction) are considered the most promising candidates for the third-generation advanced high-strength steel. The combination of excellent strength-ductility is mainly attributed to the active transformation-induced plasticity effect of the metastable retained austenite during deformation. Therefore, producing a considerable amount of retained austenite with reasonable stabilities in the steel by various heat treatment schedules is always important. In this study, granular- and lamellar-structured retained austenites were developed in a cold-rolled 0.15C-5Mn MMS by introducing a technical process of precontrolling ferrite recrystallization in the annealing schedule. The microstructures of the annealed samples were analyzed using SEM, EBSD, and TEM. The results show that duplex microstructures comprising various amounts of recrystallized ferrite and fresh martensite can be obtained in the cold-rolled MMS when controlling the occurrence of recrystallization at different intercritical temperatures by a preannealing process. When this microstructure is used for the final austenite reverted transformation annealing, the resultant ultrafine duplex microstructure with recrystallized ferrite and two types of heterogeneous retained austenite, i.e., lamellar and granular, is produced. The heterogeneous-structured austenite shows more sensitivity to increasing strain, i.e., various mechanical stabilities, which enable an excellent strength-ductility combination and reduced Lüders strain in the cold-rolled medium Mn steel.

胡宝佳, 郑沁园, 路 轶 .

冷轧中锰钢的再结晶调控及其对力学性能的影响

[J]. 金属学报, 2024, 60: 189

DOI     

为探究铁素体再结晶对冷轧中锰钢微观组织与力学性能的影响规律,以0.15C-5Mn (质量分数,%)冷轧中锰钢为研究对象,采用两步临界区退火的热处理方法,利用SEM、TEM和EBSD等表征手段和力学性能测试方法,研究了铁素体再结晶调控对冷轧中锰钢多样化残余奥氏体形成及其力学性能的影响。结果表明,通过在不同温度预先调控冷轧中锰钢中的铁素体再结晶,可获得由不同比例的等轴状再结晶铁素体和马氏体组成的双相细晶组织。经常规退火处理后,在终态组织中形成了不同体积分数的超细晶再结晶铁素体和呈等轴状/板条状形貌的多样化细晶残余奥氏体,使中锰钢在拉伸变形过程中表现出多样化的TRIP效应,在提升冷轧中锰钢强塑性能的同时,其Lüders变形也获得改善。

Bouaziz O, Zurob H, Huang M X.

Driving force and logic of development of advanced high strength steels for automotive applications

[J]. Steel Res. Int., 2013, 84: 937

Caballero F G, García-Mateo C, Chao J, et al.

Effects of morphology and stability of retained austenite on the ductility of TRIP-aided bainitic steels

[J]. ISIJ Int., 2008, 48: 1256

[本文引用: 1]

Williams J C, Starke E A.

Progress in structural materials for aerospace systems

[J]. Acta Mater., 2003, 51: 5775

[本文引用: 1]

Chen X S, Huang X M, Liu J J, et al.

Microstructure regulation and strengthening mechanisms of a hot-rolled & intercritical annealed medium-Mn steel containing Mn-segregation band

[J]. Acta Metall. Sin., 2023, 59: 1448

DOI      [本文引用: 2]

Recently, medium-Mn steel, used in the automotive industry, has attracted increasing attention as the one of the most promising candidates for the third generation of advanced high strength steels owing to its reasonable cost and excellent mechanical properties. In this study, the effect of intercritical annealing temperature on the microstructure and mechanical properties of a new composition steel was investigated, and its strengthening mechanism and related reasons were analyzed. In addition, a ultra-high product of strength and plasticity (> 70 GPa·%) of hot rolled medium manganese steel with a segregation band was eventually obtained. The results show that the grain size and orientation in the packet (defined by the original austenite grain boundary) significantly affect the mechanical properties and deformation microstructure of the material obtained under different temperatures. The obvious precipitation and dissolution processes of carbides occur at higher temperatures, and thus influence the mechanical stability of reversed austenite. During the tensile process, because it is easier to deform, the favorable packets in the non-segregation zone form an elongated-strip fine-grain zone along the loading direction, while the unfavorable packets form fragmentary grain regions. Moreover, martensite transformation preferentially occurs at the obvious orientation inside the austenite grain and the boundaries where large strain is accumulated. Through coordinated deformation, the adjacent packets eventually tend to form alternate distribution of the two kinds of micro-zone substructures, which is accompanied by the significant evolution of low-angle grain boundaries related to the dislocation activity. Due to the wide distribution of grain size in one packet, the reversed austenite in the non-segregation zone can withstand large deformation, which makes the austenite in the segregation zone undergo sufficient strain-induced martensitic transformation (SIMT), to obtain excellent combination of strength and toughness.

陈学双, 黄兴民, 刘俊杰 .

一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制

[J]. 金属学报, 2023, 59: 1448

DOI      [本文引用: 2]

对含偏析带的热轧中锰钢进行临界退火处理,通过合理控制非偏析带区的逆奥氏体转变程度,获得了超高强塑积(PSE > 70 GPa·%)。结果表明,经不同温度热处理后,包(由原奥氏体晶粒边界定义)内晶粒的尺寸、取向显著影响中锰钢的力学性能和变形组织。在拉伸过程中,沿着拉伸方向,非偏析带内有利取向的包倾向形成拉长的条状细晶区,而不利取向的包倾向形成碎块状晶区。通过协调变形,相邻包将最终倾向形成上述2种微区亚结构的交替分布。非偏析带内的逆转变奥氏体因晶粒尺寸广泛分布而可承受较大的变形,从而使得偏析带内奥氏体发生足够的应变诱发马氏体相变(SIMT),最终获得优异的强度和韧性匹配。

Launey M E, Ritchie R O.

On the fracture toughness of advanced materials

[J]. Adv. Mater., 2009, 21: 2103

[本文引用: 1]

Ritchie R O, Zheng X R.

Growing designability in structural materials

[J]. Nat. Mater., 2022, 21: 968

DOI      PMID      [本文引用: 1]

Bordone M, Monsalve A, Perez Ipiña J.

Fracture toughness of high-manganese steels with TWIP/TRIP effects

[J]. Eng. Fract. Mech., 2022, 275: 108837

[本文引用: 3]

Hu C, Pan S, Huang M X.

Strong and tough heterogeneous TWIP steel fabricated by warm rolling

[J]. Acta Metall. Sin., 2022, 58: 1519

DOI      [本文引用: 1]

Twinning-induced plasticity (TWIP) steel has received significant research attention because of its superior mechanical properties, including uniform elongation, ultimate tensile strength, and fracture toughness. However, it has a relatively low yield stress, which limits its industrial application. Increasing the dislocation density has been proved to be an effective method for enhancing the yield stress. In this work, a simple warm rolling (WR) route was applied at 700oC to manufacture partially recrystallized TWIP steel with a high yield stress (1250 MPa), good total elongation (24%), and exceptional fracture toughness (KJIC of approximately 125 MPa·m1/2). The steel manufactured using WR was characterized using SEM, EBSD, and TEM at different length scales. Compared to the steel microstructure obtained after hot rolling or cold rolling (CR), this WR TWIP steel exhibits a distinct heterogeneous structure. The matrix has numerous dislocations with twinned coarse grains (approximately 75%) and nearly defect-free recrystallized fine grains (approximately 25%), which form during the reheating period of the WR process. The in situ tensile tests of the WR and CR steels show that the deformed coarse grains provide high yield stress with negligible deformation, whereas the recrystallized fine grains can undergo considerable plastic deformation, which results in a good work hardening capacity during tensile deformation. The fracture toughness tests of the compact tension (C(T)) samples indicate that the recrystallized grains in the WR steel can enhance the crack tip blunting and deflect cracks, which enhance the crack-growth resistance. Alternatively, these toughening mechanisms are not observed in the homogeneous CR steel. Therefore, this heterogeneous structure, which is induced by the high temperature WR process, provides the TWIP steel with excellent strength and toughness.

胡 晨, 潘 帅, 黄明欣.

高强高韧异质结构温轧TWIP钢

[J]. 金属学报, 2022, 58: 1519

[本文引用: 1]

Lage M A, Assis K S, Mattos O R.

Hydrogen influence on fracture toughness of the weld metal in super duplex stainless steel (UNS S32750) welded with two different heat input

[J]. Int. J. Hydrogen Energy, 2015, 40: 17000

[本文引用: 1]

Sieurin H, Westin E M, Liljas M, et al.

Fracture toughness of welded commercial lean duplex stainless steels

[J]. Weld. World, 2009, 53: R24

Martis C J, Putatunda S K, Boileau J.

Processing of a new high strength high toughness steel with duplex microstructure (ferrite + austenite)

[J]. Mater. Des., 2013, 46: 168

[本文引用: 1]

Kobayashi J, Ina D, Futamura A, et al.

Fracture toughness of an advanced ultrahigh-strength TRIP-aided steel

[J]. ISIJ Int., 2014, 54: 955

[本文引用: 2]

Niu G, Zurob H S, Misra R D K, et al.

Superior fracture toughness in a high-strength austenitic steel with heterogeneous lamellar microstructure

[J]. Acta Mater., 2022, 226: 117642

[本文引用: 1]

Ran X Z, Zhang S Q, Liu D, et al.

Role of microstructural characteristics in combination of strength and fracture toughness of laser additively manufactured ultrahigh-strength AerMet100 steel

[J]. Metall. Mater. Trans., 2021, 52A: 1248

[本文引用: 2]

Handerhan K J, Garrison W M, Moody N R.

A comparison of the fracture behavior of two heats of the secondary hardening steel AF1410

[J]. Metall. Trans., 1989, 20A: 105

Delagnes D, Pettinari-Sturmel F, Mathon M H, et al.

Cementite-free martensitic steels: A new route to develop high strength/high toughness grades by modifying the conventional precipitation sequence during tempering

[J]. Acta Mater., 2012, 60: 5877

Mondiere A, Déneux V, Binot N, et al.

Controlling the MC and M2C carbide precipitation in Ferrium® M54® steel to achieve optimum ultimate tensile strength/fracture toughness balance

[J]. Mater. Charact., 2018, 140: 103

Liu Z B, Yang Z, Wang X H, et al.

Enhanced strength-ductility synergy in a new 2.2 GPa grade ultra-high strength stainless steel with balanced fracture toughness: Elucidating the role of duplex aging treatment

[J]. J. Alloys Compd., 2022, 928: 167135

[本文引用: 1]

He Y, Yang K, Qu W S, et al.

Strengthening and toughening of a 2800-MPa grade maraging steel

[J]. Mater. Lett., 2002, 56: 763

[本文引用: 1]

de Lima Filho V X, Lima T N, Griza S, et al.

The increase of fracture toughness with solution annealing temperature in 18Ni maraging 300 steel

[J]. Mater. Res., 2021, 24: e20200472

He Y, Yang K, Liu K, et al.

Age hardening and mechanical properties of a 2400 MPa grade cobalt-free maraging steel

[J]. Metall. Mater. Trans., 2006, 37A: 1107

[本文引用: 3]

Kumar G, Ghosh S, Pallaspuro S, et al.

Fracture toughness characteristics of thermo-mechanically rolled direct quenched and partitioned steels

[J]. Mater. Sci. Eng., 2022, A840: 142788

[本文引用: 1]

Miihkinen V T T, Edmonds D V.

Influence of retained austenite on the fracture toughness of high strength steels

[A]. Fracture 84[M]. Amsterdam: Elsevier, 1984: 1481

Liu L, Yu Q, Wang Z, et al.

Making ultrastrong steel tough by grain-boundary delamination

[J]. Science, 2020, 368: 1347

DOI      PMID      [本文引用: 2]

Developing ultrahigh-strength steels that are ductile, fracture resistant, and cost effective would be attractive for a variety of structural applications. We show that improved fracture resistance in a steel with an ultrahigh yield strength of nearly 2 gigapascals can be achieved by activating delamination toughening coupled with transformation-induced plasticity. Delamination toughening associated with intensive but controlled cracking at manganese-enriched prior-austenite grain boundaries normal to the primary fracture surface dramatically improves the overall fracture resistance. As a result, fracture under plane-strain conditions is automatically transformed into a series of fracture processes in "parallel" plane-stress conditions through the thickness. The present "high-strength induced multidelamination" strategy offers a different pathway to develop engineering materials with ultrahigh strength and superior toughness at economical materials cost.Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Hu C, Huang C P, Liu Y X, et al.

The dual role of TRIP effect on ductility and toughness of a medium Mn steel

[J]. Acta Mater., 2023, 245: 118629

[本文引用: 6]

Lacroix G, Pardoen T, Jacques P J.

The fracture toughness of TRIP-assisted multiphase steels

[J]. Acta Mater., 2008, 56: 3900

[本文引用: 14]

Rohit B, Muktinutalapati N R.

Austenite reversion in 18% Ni maraging steel and its weldments

[J]. Mater. Sci. Technol., 2018, 34: 253

[本文引用: 1]

Hannink R H J, Kelly P M, Muddle B C.

Transformation toughening in zirconia-containing ceramics

[J]. J. Am. Ceram. Soc., 2000, 83: 461

[本文引用: 2]

Reyes-Morel P E, Chen I W.

Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals: I, Stress assistance and autocatalysis

[J]. J. Am. Ceram. Soc., 1988, 71: 343

Aoki M, Chiang Y M, Kosacki I, et al.

Solute segregation and grain-boundary impedance in high-purity stabilized zirconia

[J]. J. Am. Ceram. Soc., 1996, 79: 1169

Sun Q P, Zhao Z J, Chen W Z, et al.

Experimental study of stress-induced localized transformation plastic zones in tetragonal zirconia polycrystalline ceramics

[J]. J. Am. Ceram. Soc., 1994, 77: 1352

[本文引用: 1]

Yoshida K, Wakai F, Nishiyama N, et al.

Large increase in fracture resistance of stishovite with crack extension less than one micrometer

[J]. Sci. Rep., 2015, 5: 10993

DOI      PMID      [本文引用: 2]

The development of strong, tough, and damage-tolerant ceramics requires nano/microstructure design to utilize toughening mechanisms operating at different length scales. The toughening mechanisms so far known are effective in micro-scale, then, they require the crack extension of more than a few micrometers to increase the fracture resistance. Here, we developed a micro-mechanical test method using micro-cantilever beam specimens to determine the very early part of resistance-curve of nanocrystalline SiO2 stishovite, which exhibited fracture-induced amorphization. We revealed that this novel toughening mechanism was effective even at length scale of nanometer due to narrow transformation zone width of a few tens of nanometers and large dilatational strain (from 60 to 95%) associated with the transition of crystal to amorphous state. This testing method will be a powerful tool to search for toughening mechanisms that may operate at nanoscale for attaining both reliability and strength of structural materials.

Antolovich S D, Singh B.

On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels

[J]. Metall. Trans., 1971, 2B: 2135

[本文引用: 5]

Antolovich S D, Saxena A, Chanani G R.

Increased fracture toughness in a 300 grade maraging steel as a result of thermal cycling

[J]. Metall. Trans., 1974, 5: 623

[本文引用: 1]

McMeeking R M, Evans A G.

Mechanics of transformation‐toughening in brittle materials

[J]. J. Am. Ceram. Soc., 1982, 65: 242

[本文引用: 7]

Irwin G R.

Fracturing and fracture mechanics

[R]. Champagne: University of Illinois at Urbana-Champaign, 1961: 202

[本文引用: 2]

Irwin G R.

Plastic zone near a crack and fracture toughness

[A]. Proceedings of the 7th Sagamore Ordnance Materials Conference[C]. New York: Syracuse University Press, 1960: 463

[本文引用: 2]

Eshelby J D.

The determination of the elastic field of an ellipsoidal inclusion, and related problems

[J]. Proc. Roy. Soc., 1957, 241A: 376

[本文引用: 1]

Bueckner H F.

Novel principle for the computation of stress intensity factors

[J]. Z. Angew. Math. Mech., 1970, 50: 529

[本文引用: 1]

Rice J R.

Some remarks on elastic crack-tip stress fields

[J]. Int. J. Solids Struct., 1972, 8: 751

[本文引用: 1]

Furuhara T.

Matrix structure of martensite and bainite in steels

[J]. Heat Treat., 2009, 24(2): 16

[本文引用: 1]

古原忠.

钢中马氏体和贝氏体基体组织的特征

[J]. 热处理, 2009, 24(2): 16

[本文引用: 1]

Wang C D, Qiu H, Kimura Y, et al.

Morphology, crystallography, and crack paths of tempered lath martensite in a medium-carbon low-alloy steel

[J]. Mater. Sci. Eng., 2016, A669: 48

Hockauf K, Wagner M F X, Mašek B, et al.

Mechanisms of fatigue crack propagation in a Q&P-processed steel

[J]. Mater. Sci. Eng., 2019, A754: 18

[本文引用: 1]

Faber K T, Evans A G.

Crack deflection processes-I. Theory

[J]. Acta Metall., 1983, 31: 565

[本文引用: 1]

Rice J R, Thomson R.

Ductile versus brittle behaviour of crystals

[J]. Philos. Mag., 1974, 29A: 73

[本文引用: 1]

Wu R M, Li W, Zhou S, et al.

Effect of retained austenite on the fracture toughness of quenching and partitioning (Q&P)-treated sheet steels

[J]. Metall. Mater. Trans., 2014, 45A: 1892

[本文引用: 5]

Zhou S B, Hu F, Zhou W, et al.

Effect of retained austenite on impact toughness and fracture behavior of medium carbon submicron-structured bainitic steel

[J]. J. Mater. Res. Technol., 2021, 14: 1021

DOI     

The effects of retained austenite on the crack propagation behavior of a submicron-structured bainitic steel under impact fracture were studied. Scanning electron micro-scopy (SEM), transmission electron microscopy (TEM), and electron back-scattering diffraction (EBSD) were employed to characterize the size, distribution, and quantity of the matrix structure, and the microstructure of the impact fracture samples under con-ditions of two different bainitic processes. The retained austenite content at 280 degrees C was higher than that at 320 degrees C, and the microstructure appeared more uniform and refined, resulting in better impact toughness. The martensite + retained austenite constituents took part in the initiation of the fracture process and the crack ended at film of retained austenite. During fracture, a mixture of brittle, hard block martensite + retained austenite was easy to induced a crack opening. The effect of the transformation-induced plasticity of the retained austenite with a small block and film can effectively cause passivity and even inhibit crack growth. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Zou Y, Xu Y B, Hu Z P, et al.

Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate

[J]. Mater. Sci. Eng., 2016, A675: 153

[本文引用: 1]

Zhou Y T, Hojo T, Koyama M, et al.

Effect of austempering treatment on the microstructure and mechanical properties of 0.4C-1.5Si-1.5Mn TRIP-aided bainitic ferrite steel

[J]. Mater. Sci. Eng., 2021, A819: 141479

[本文引用: 1]

Landes J D, McCabe D E, Boulet J A M. Fracture Mechanics: Twenty-Fourth Volume[M]. Philadelphia: ASTM International, 1994: 48

[本文引用: 1]

Pardoen T, Marchal Y, Delannay F.

Thickness dependence of cracking resistance in thin aluminium plates

[J]. J. Mech. Phys. Solids, 1999, 47: 2093

[本文引用: 1]

Pardoen T, Delannay F.

A method for the metallographical measurement of the CTOD at cracking initiation and the role of reverse plasticity on unloading

[J]. Eng. Fract. Mech., 2000, 65: 455

[本文引用: 1]

Gao G H, Liu R, Wang K, et al.

Role of retained austenite with different morphologies on sub-surface fatigue crack initiation in advanced bainitic steels

[J]. Scr. Mater., 2020, 184: 12

[本文引用: 1]

Zhang S H, Lv D Z, Xiong J.

The effect of reversed austenite on mechanical properties of 13Cr4NiMo steel: A CPFEM study

[J]. J. Mater. Res. Technol., 2022, 18: 2963

[本文引用: 1]

Li Y J, Kang J, Zhang W N, et al.

A novel phase transition behavior during dynamic partitioning and analysis of retained austenite in quenched and partitioned steels

[J]. Mater. Sci. Eng., 2018, A710: 181

[本文引用: 1]

Wang Z, Huang M X.

Optimising the strength-ductility-toughness combination in ultra-high strength quenching and partitioning steels by tailoring martensite matrix and retained austenite

[J]. Int. J. Plast., 2020, 134: 102851

[本文引用: 1]

Handerhan K J, Garrison W M.

A study of crack tip blunting and the influence of blunting behavior on the fracture toughness of ultra high strength steels

[J]. Acta Metall. Mater., 1992, 40: 1337

[本文引用: 1]

Narayan R L, Raut D, Ramamurty U.

A quantitative connection between shear band mediated plasticity and fracture initiation toughness of metallic glasses

[J]. Acta Mater., 2018, 150: 69

[本文引用: 1]

/