AA 7055 aluminium alloy has been widely applied in aviation and aerospace applications, especially after T7751 heat treatment, owing to its excellent properties, such as high strength and good stress corrosion and fatigue resistances. For 7XXX aluminium alloys, aging hardening is the main strengthening mechanism, and the hardening effect is determined by the microstructural features of precipitates including morphology, composition, volume fraction, nucleation density, and size distribution. To further improve the property of alloy and expand the breadth of applications, establishing a precise predictive model regarding strength performance associated with the precipitates is necessary. In this work, based on the quantitative results of the precipitates obtained using small angle X-ray scattering techniques, the strengthening models of AA 7055 Al alloys aged at 120 and 160oC were investigated. Precipitation kinetics show that at the early stages of aging, the evolution of radius and the half thickness of plate-like precipitates are both linear with t1/2 (t means the aging time). Conversely, at the later stages of aging, they are linear with t1/3. The evolution of the volume fraction of the precipitates follows a JMA (Johnson-Mehl-Avrami)-type equation. Strength contributions from both GPI zones and η' precipitates are considered. Moreover, strengthening modeling considered both the modulus and coherency strain strengthening mechanisms of these two kinds of precipitates that had been built for the AA 7055 Al alloy aged at 120 and 160oC. Therefore, yield strength during aging can be predicted.
Keywords:AA 7055 aluminium alloy
;
aging precipitation
;
strengthening model
CHEN Junzhou, LV Liangxing, ZHEN Liang, DAI Shenglong. Precipitation Strengthening Model of AA 7055 Aluminium Alloy. Acta Metallurgica Sinica[J], 2021, 57(3): 353-362 DOI:10.11900/0412.1961.2020.00328
AA 7055是一种可时效硬化的超高强铝合金,特别是经T7751处理(固溶处理后进行水淬,然后进行回归再时效处理)后,合金具有优异的综合性能(兼具良好的力学性能、抗应力腐蚀以及断裂韧性等),已在航空、航天领域广泛应用。随着武器装备轻量化和机动性要求提升,零部件载荷设计与结构优化的准确性要求也逐渐加强,这对材料性能优化控制与精准预测提出了较高的要求[1~4]。时效处理是铝合金力学性能提升、调控的重要手段。在时效过程中,过饱和溶质原子从基体中弥散析出形成第二相,抑制晶界滑移、阻碍位错移动而强化基体,因此量化认知时效过程中的析出相变化(如尺寸、体积分数、形貌等),建立时效过程中析出相变量与强度之间的关系,这对精准预测铝合金性能、指导实际生产优化方向有重要意义[5]。
Fig.10
Yield strength from the experiment compared with the predicted value using over-aged model (Eq.(40)) for the AA 7055 Al alloy aged at 120oC
3.4.2 欠时效强化模型
AA 7055铝合金120℃欠时效强化模型处理与160℃欠时效阶段相同,除颗粒尺寸与体积分数的演化,各强化项的基本参数与160℃欠时效模型相同。具体参数见表1,一些数据来自文献[13,25~27]。值得注意的是,这里GPI区的体积分数变化与160℃略有不同。根据透射电镜的结果[24],假设此时GPI区体积分数到达峰值的时间为3 h (160℃时效时为1 h),并且所能到达的平衡体积分数与160℃时效一样,从而其体积分数变化如图11所示。
Table 1
表1
表1AA 7055铝合金120℃欠时效强化模型中用到的一些参数
Table 1 Summaries of input data using under-aged model for the AA 7055 Al alloy aged at 120oC
Progress in structural materials for aerospace systems
1
2003
... AA 7055是一种可时效硬化的超高强铝合金,特别是经T7751处理(固溶处理后进行水淬,然后进行回归再时效处理)后,合金具有优异的综合性能(兼具良好的力学性能、抗应力腐蚀以及断裂韧性等),已在航空、航天领域广泛应用.随着武器装备轻量化和机动性要求提升,零部件载荷设计与结构优化的准确性要求也逐渐加强,这对材料性能优化控制与精准预测提出了较高的要求[1~4].时效处理是铝合金力学性能提升、调控的重要手段.在时效过程中,过饱和溶质原子从基体中弥散析出形成第二相,抑制晶界滑移、阻碍位错移动而强化基体,因此量化认知时效过程中的析出相变化(如尺寸、体积分数、形貌等),建立时效过程中析出相变量与强度之间的关系,这对精准预测铝合金性能、指导实际生产优化方向有重要意义[5]. ...
Influence of predeformation on ageing in an Al-Zn-Mg alloy-I. Microstructure evolution and mechanical properties
1998
Advanced aluminium and hybrid aerostructures for future aircraft
2006
7XXX系超高强铝合金的强韧化研究进展及发展趋势
1
2012
... AA 7055是一种可时效硬化的超高强铝合金,特别是经T7751处理(固溶处理后进行水淬,然后进行回归再时效处理)后,合金具有优异的综合性能(兼具良好的力学性能、抗应力腐蚀以及断裂韧性等),已在航空、航天领域广泛应用.随着武器装备轻量化和机动性要求提升,零部件载荷设计与结构优化的准确性要求也逐渐加强,这对材料性能优化控制与精准预测提出了较高的要求[1~4].时效处理是铝合金力学性能提升、调控的重要手段.在时效过程中,过饱和溶质原子从基体中弥散析出形成第二相,抑制晶界滑移、阻碍位错移动而强化基体,因此量化认知时效过程中的析出相变化(如尺寸、体积分数、形貌等),建立时效过程中析出相变量与强度之间的关系,这对精准预测铝合金性能、指导实际生产优化方向有重要意义[5]. ...
7XXX系超高强铝合金的强韧化研究进展及发展趋势
1
2012
... AA 7055是一种可时效硬化的超高强铝合金,特别是经T7751处理(固溶处理后进行水淬,然后进行回归再时效处理)后,合金具有优异的综合性能(兼具良好的力学性能、抗应力腐蚀以及断裂韧性等),已在航空、航天领域广泛应用.随着武器装备轻量化和机动性要求提升,零部件载荷设计与结构优化的准确性要求也逐渐加强,这对材料性能优化控制与精准预测提出了较高的要求[1~4].时效处理是铝合金力学性能提升、调控的重要手段.在时效过程中,过饱和溶质原子从基体中弥散析出形成第二相,抑制晶界滑移、阻碍位错移动而强化基体,因此量化认知时效过程中的析出相变化(如尺寸、体积分数、形貌等),建立时效过程中析出相变量与强度之间的关系,这对精准预测铝合金性能、指导实际生产优化方向有重要意义[5]. ...
Quantitative evaluation of precipitates in an Al-Zn-Mg-Cu alloy after isothermal aging
1
2006
... AA 7055是一种可时效硬化的超高强铝合金,特别是经T7751处理(固溶处理后进行水淬,然后进行回归再时效处理)后,合金具有优异的综合性能(兼具良好的力学性能、抗应力腐蚀以及断裂韧性等),已在航空、航天领域广泛应用.随着武器装备轻量化和机动性要求提升,零部件载荷设计与结构优化的准确性要求也逐渐加强,这对材料性能优化控制与精准预测提出了较高的要求[1~4].时效处理是铝合金力学性能提升、调控的重要手段.在时效过程中,过饱和溶质原子从基体中弥散析出形成第二相,抑制晶界滑移、阻碍位错移动而强化基体,因此量化认知时效过程中的析出相变化(如尺寸、体积分数、形貌等),建立时效过程中析出相变量与强度之间的关系,这对精准预测铝合金性能、指导实际生产优化方向有重要意义[5]. ...
Influence of predeformation and ageing of an Al-Zn-Mg alloy-II. Modeling of precipitation kinetics and yield stress
... AA 7055铝合金120℃欠时效强化模型处理与160℃欠时效阶段相同,除颗粒尺寸与体积分数的演化,各强化项的基本参数与160℃欠时效模型相同.具体参数见表1,一些数据来自文献[13,25~27].值得注意的是,这里GPI区的体积分数变化与160℃略有不同.根据透射电镜的结果[24],假设此时GPI区体积分数到达峰值的时间为3 h (160℃时效时为1 h),并且所能到达的平衡体积分数与160℃时效一样,从而其体积分数变化如图11所示. ...
... Summaries of input data using under-aged model for the AA 7055 Al alloy aged at 120oCTable 1
Parameter
Value
Data source
Taylor factor M
3.06
Present model
Coherency strain for η'εη'
0.0133
Present model
Coherency strain for GPI εGPI
0.0025
Present model
Constant depends on the precipitation κ
3.2
Present model
Maximum volume fraction of whole precipitation
0.1035
Ref.[13]
Maximum volume fraction of the GPI zone
0.025
Present model
Shear modulus G
27 GPa
Ref.[25]
Shear modulus between the η' and matrix ΔEη'
0.7 GPa
Ref.[26]
Shear modulus between the GPI zones and matrix ΔEGPI
1.5 GPa
Present model
Inherent strength of Al σi
15.7 MPa
Ref.[27]
Grain boundary strengthening value ΔσGB
22 MPa
Present model
Constant depends on the solute atoms C3
237.5 MPa
Present model
Magnitude of the Burgers vector b
0.286 nm
Ref.[25]
AA 7055铝合金120℃时效过程中fGPI的变化
Evolution of the fGPI for the AA 7055 Al alloy aged at 120oCFig.11
... AA 7055铝合金120℃欠时效强化模型处理与160℃欠时效阶段相同,除颗粒尺寸与体积分数的演化,各强化项的基本参数与160℃欠时效模型相同.具体参数见表1,一些数据来自文献[13,25~27].值得注意的是,这里GPI区的体积分数变化与160℃略有不同.根据透射电镜的结果[24],假设此时GPI区体积分数到达峰值的时间为3 h (160℃时效时为1 h),并且所能到达的平衡体积分数与160℃时效一样,从而其体积分数变化如图11所示. ...
Modeling the hardness and yield strength evolutions of aluminum alloy with rod/needle-shaped precipitates
3
2007
... AA 7055铝合金120℃欠时效强化模型处理与160℃欠时效阶段相同,除颗粒尺寸与体积分数的演化,各强化项的基本参数与160℃欠时效模型相同.具体参数见表1,一些数据来自文献[13,25~27].值得注意的是,这里GPI区的体积分数变化与160℃略有不同.根据透射电镜的结果[24],假设此时GPI区体积分数到达峰值的时间为3 h (160℃时效时为1 h),并且所能到达的平衡体积分数与160℃时效一样,从而其体积分数变化如图11所示. ...
... Summaries of input data using under-aged model for the AA 7055 Al alloy aged at 120oCTable 1
Parameter
Value
Data source
Taylor factor M
3.06
Present model
Coherency strain for η'εη'
0.0133
Present model
Coherency strain for GPI εGPI
0.0025
Present model
Constant depends on the precipitation κ
3.2
Present model
Maximum volume fraction of whole precipitation
0.1035
Ref.[13]
Maximum volume fraction of the GPI zone
0.025
Present model
Shear modulus G
27 GPa
Ref.[25]
Shear modulus between the η' and matrix ΔEη'
0.7 GPa
Ref.[26]
Shear modulus between the GPI zones and matrix ΔEGPI
1.5 GPa
Present model
Inherent strength of Al σi
15.7 MPa
Ref.[27]
Grain boundary strengthening value ΔσGB
22 MPa
Present model
Constant depends on the solute atoms C3
237.5 MPa
Present model
Magnitude of the Burgers vector b
0.286 nm
Ref.[25]
AA 7055铝合金120℃时效过程中fGPI的变化
Evolution of the fGPI for the AA 7055 Al alloy aged at 120oCFig.11
... AA 7055铝合金120℃欠时效强化模型处理与160℃欠时效阶段相同,除颗粒尺寸与体积分数的演化,各强化项的基本参数与160℃欠时效模型相同.具体参数见表1,一些数据来自文献[13,25~27].值得注意的是,这里GPI区的体积分数变化与160℃略有不同.根据透射电镜的结果[24],假设此时GPI区体积分数到达峰值的时间为3 h (160℃时效时为1 h),并且所能到达的平衡体积分数与160℃时效一样,从而其体积分数变化如图11所示. ...
... Summaries of input data using under-aged model for the AA 7055 Al alloy aged at 120oCTable 1
Parameter
Value
Data source
Taylor factor M
3.06
Present model
Coherency strain for η'εη'
0.0133
Present model
Coherency strain for GPI εGPI
0.0025
Present model
Constant depends on the precipitation κ
3.2
Present model
Maximum volume fraction of whole precipitation
0.1035
Ref.[13]
Maximum volume fraction of the GPI zone
0.025
Present model
Shear modulus G
27 GPa
Ref.[25]
Shear modulus between the η' and matrix ΔEη'
0.7 GPa
Ref.[26]
Shear modulus between the GPI zones and matrix ΔEGPI
1.5 GPa
Present model
Inherent strength of Al σi
15.7 MPa
Ref.[27]
Grain boundary strengthening value ΔσGB
22 MPa
Present model
Constant depends on the solute atoms C3
237.5 MPa
Present model
Magnitude of the Burgers vector b
0.286 nm
Ref.[25]
AA 7055铝合金120℃时效过程中fGPI的变化
Evolution of the fGPI for the AA 7055 Al alloy aged at 120oCFig.11