中国材料基因工程研究进展
Progress in Materials Genome Engineering in China
通讯作者: 谢建新,jxxie@mater.ustb.edu.cn,主要从事材料基因工程关键技术研究
责任编辑: 李海兰
收稿日期: 2020-06-05 修回日期: 2020-06-28 网络出版日期: 2020-10-11
Corresponding authors: XIE Jianxin, professor, Tel: (010)62332254, E-mail:jxxie@mater.ustb.edu.cn
Received: 2020-06-05 Revised: 2020-06-28 Online: 2020-10-11
作者简介 About authors
宿彦京,男,1965年生,教授,博士
材料基因工程是材料领域的颠覆性前沿技术,将对材料研发模式产生革命性的变革,全面加速材料从设计到工程化应用的进程,大幅度提升新材料的研发效率,缩短研发周期,降低研发成本,促进工程化应用。本文从基础理论与方法、关键技术与装备、新材料研发与工程化应用、人才培养以及材料基因工程新理念的形成和推广等方面,综述了中国材料基因工程的研究进展,并提出了未来发展方向建议。
关键词:
Materials genome engineering (MGE) is a frontier technology in the field of material science and engineering, which is well capable to revolutionize the research and development (R&D) mode of new materials, greatly improve the R&D efficiency, shorten the R&D time, and reduce the cost. This paper reviews the progress of MGE in China from the aspects of the fundamental theory and methods, key technology and equipment, the R&D of new materials and related engineering application, talents training, formation and promotion of new concept of material genetic engineering. The paper also looks forward to the future development of MGE in China.
Keywords:
本文引用格式
宿彦京, 付华栋, 白洋, 姜雪, 谢建新.
SU Yanjing, FU Huadong, BAI Yang, JIANG Xue, XIE Jianxin.
新材料是发展高端制造业的物质基础,是高新技术发展的先导。为了加速新材料产业的发展,重振美国高端制造业,2011年6月,时任美国总统奥巴马宣布启动了“面向全球竞争力的材料基因组计划”(Materials Genome Initiative for Global Competitiveness,简称“材料基因组计划”)[1],重点建设材料高通量计算、高通量实验和材料大数据等基础设施和平台,形成新材料创新发展的基础条件和能力。2014年美国将“材料基因组计划”提升为“国家战略”,深入诠释了“材料基因组计划”的内涵,明确其核心内容和目标是:通过实验-计算-理论的集成创新,加速材料大数据技术的发展,培养具有材料基因组新思想和新理念的材料工作者,变革材料研发文化,加速美国新材料和高端制造业的发展[2]。作为实现材料基因组计划的重要举措,美国建设了45个材料基因组创新平台,每个平台政府投资0.7~1.2亿美元,建设周期5~7年。2018年美国RTI国际咨询公司和华盛顿大学经济政策研究中心对建设材料基因组基础设施的经济性进行了分析,通过对120位企业家的咨询和调研得出结论:材料基因组是集基础研究、共性技术、工业放大技术和产品集成技术为一体的综合性技术,是对材料发现、开发、生产、应用等阶段的全过程加速,是打破新材料研究与市场化之间瓶颈、加速新材料产业化的有效手段;材料基因组关键技术和基础设施的应用,可以降低新材料研发风险1/2以上,缩短新材料从发现到工程化应用时间1/3以上,降低研发成本1/3以上,产生的经济效益约为1230~2700亿美元/年[3]。2019年美国发布了关于材料基因组人才培养的报告,定义了材料基因组专业人才应该具备数据处理、计算建模、计算机仿真、可视化和软件管理的技能,具有材料多层次、跨尺度集成计算的能力,掌握高通量和自动化实验的技能[4]。
美国宣布“材料基因组计划”后,欧盟、日本和印度等国家迅速启动了类似的研究计划,争取在新一轮材料革命性发展中占有先机。中国工程院和科学院开展了广泛的咨询和深入的调研,科技部于2015年启动了“材料基因工程关键技术与支撑平台”重点专项(简称“材料基因工程重点专项”),开展材料基因工程基础理论、关键技术与装备、验证性示范应用的研究,布局了示范性创新平台的建设。在材料科技工作者的努力下,中国材料基因工程研究取得了令人瞩目的进展。
1 材料基因工程的概念与内涵
材料基因工程的基本理念是变革传统的“试错法”材料研究模式,发展“理性设计-高效实验-大数据技术”深度融合、协同创新的新型材料研发模式,显著提高新材料的研发效率,促进新材料的应用。基本目标是将新材料的研发周期缩短一半、研发成本降低一半。实现途径是发展材料高效计算、高通量实验、大数据等共性关键技术及装备,构建“计算、实验、数据库”三大基础创新平台,通过创新平台和关键技术的深度融合、协同创新,加速新材料的研发和工程化应用。
材料高效计算以高性能计算平台和软件为基础,通过并发式自动流程高通量算法,实现新材料成分/结构(组织)/性能等的高效筛选;以多层次、跨尺度计算方法为核心,通过集成计算材料工程(ICME),解决新材料组织结构-性能-工艺之间的关联和工艺优化问题。两者构成了材料理性设计的技术基础。
材料高通量实验主要包括高通量制备、高通量表征和服役性能高效评价等实验技术和方法。材料高通量制备是指一次实验,可以制备或加工出一批样品,即几十个或几百个样品,乃至成千上万个样品;材料高通量表征是指一次实验,可以对一批样品进行表征,或者通过一次实验获得样品的成分/结构/性能等多个表征结果;材料服役性能高效评价是指一次实验获得多个服役性能,或者短时间实验获得材料长期服役行为的数据。
数据库有许多种,传统的材料数据库大多是指存储了材料牌号、成分、结构、性质/性能、服役效能的简单结构关系型数据库,大多是为科技开发基础数据查询、材料管理、使用(选材)而建立的数据库。材料基因工程理念的数据库不同于传统的数据库,它应该具有支撑/服务于高效计算、高通量实验,可实现海量数据自动处理和积累的功能;借助互联网、云数据技术,通过数据挖掘进行数据收集和积累的功能;应用机器学习、人工智能等技术,实现数据分析、模型建立,探索新材料、发现新性能等功能。
材料高效计算、高通量实验和大数据技术构成材料基因工程的基础技术体系。通过材料高效计算和高通量实验,可实现新材料的快速筛选和材料数据的快速积累;通过大数据和人工智能技术的应用,可实现材料成分和工艺的全局优化、材料性能的提升;通过创新平台,实现材料基因工程关键技术的深度融合和协同创新。材料基因工程关键技术的应用,将材料传统顺序迭代的试错法研发模式,变革成全过程关联并行的新模式(图1),全面加速材料发现、开发、生产、应用等全过程的进程,促进新材料研发和工程化应用。
图1
图1
材料基因工程变革研发模式
Fig.1
Schematic diagram for the research and development model revolutionized by material genome engineering (MGE)
2 材料基因工程重点专项
材料基因工程重点专项围绕实现材料研发周期缩短一半、研发成本降低一半的战略目标,构建支撑我国材料基因工程研究和协同创新发展的高效计算、高通量实验和数据库等三大示范平台,研发材料高效计算方法、高通量制备与表征技术、材料服役行为高效评价技术、材料数据库和大数据技术等四大关键技术,在能源材料、生物医用材料、稀土功能材料、催化材料、特种合金材料等5类材料上开展应用示范,验证研发技术的先进性和适用性,并实现突破。
材料服役行为评价是材料研发周期内耗时最长、成本最高、技术最复杂的阶段,是我国材料研究领域的短板。材料基因工程重点专项同样将研发材料服役与失效的多尺度模拟计算算法、发展材料服役行为的高效评价方法和失效过程的等效加速模拟实验技术、材料服役大数据技术等课题,作为发展我国材料基因工程的重要内容。材料服役与失效高效计算和实验评价技术的发展和应用,将促进材料服役行为数据的快速积累,通过数据挖掘和机器学习,建立基于大数据分析和概率统计的重大工程服役安全评价和寿命预测技术,提升新材料的工程化应用速度,保障重大工程的服役安全。
重点专项共设立了45个项目开展研究。重点专项实施中强调要把材料高效计算、高通量实验和大数据技术的研发、应用和融合作为研究任务的核心。重点强调:
(1) 项目实施要符合材料基因工程研究的基本要求,体现研究理念、方法和研究模式的创新、发展或有效地应用材料基因工程的高效技术;
(2) 关键技术研发类项目要自主研发创新技术,关键技术的主要指标在国内外要具有先进性,研发技术的应用要显著提升新材料的研发效率;
(3) 验证性应用示范类项目在研发中要采用材料高效计算/高通量实验/大数据技术等3种关键技术中至少一种以上的技术,强调研发效率的提升;
(4) 示范平台建设类项目强调平台应具有通用性,要在所建平台上实现对一类材料或若干种材料进行高效计算设计,或进行高通量制备/表征,或进行材料大数据分析,而不是一个平台只针对一、两种材料。
在材料基因工程重点专项的牵引下,各级部门、地方政府和企业积极投入,布局和开展材料基因工程研究和创新平台建设。据不完全统计,目前科技部和各地方政府与企业在材料基因工程领域的投入超过30亿元人民币,参与研究的高校、研究院所和企业等超过400家。建设了一批材料基因工程创新平台和基地,取得了一批创新性的研究成果,有力地推动了我国材料基因工程基础理论研究、关键技术研发、工程化与产业化应用等方面的发展。2019年美国发布的材料基因组计划人才培养报告[4]认为,中国材料基因工程的发展理念和实施成效体现出了更广泛的产学研一体化的特点。
3 主要研究进展
3.1 新材料发现、优化与性能提升
我国科学家应用材料基因工程的方法和技术在新材料前沿基础研究、新材料设计与发现、性能优化与提升等方面取得显著进展。
图2
图2
材料基因工程方法发现新型高温块体金属玻璃Ir-Ni-Ta-(B)[5]
Fig.2
New high-temperature bulk metallic glass (BMG) Ir-Ni-Ta-(B) discovered by MGE method (Tx—crystallization temperature, Tg—glass transition temperature)[5]
(a) combinatorial fabrication of new high-temperature BMGs
(b) high-throughput characterization of BMGs
(c) summary of the supercooled liquid region vs the glass transition temperature of BMGs
(d) strength vs temperature of high-temperature BMGs as well as other alloys
(2) 利用材料高效表征技术,发现TiZrHfNb高熵合金中间隙元素存在化学短程有序,促进了富O、Zr、Ti原子复合物的形成,有序间隙化合物改变位错剪切模式,从平面滑移变成波形滑移,并增强双重横向滑移,同时提升材料强度和延展性;在TiZrHfNb高熵合金中掺杂2% (原子分数)的O,合金强度增加48.5%、延性增加95.2%,为金属材料的增强增韧设计提供了全新的思路[6]。
(3) 利用梯形试样的透射电镜原位加载实验和图像三维重构技术,实验证明了锥面位错是Mg中有效的塑性载体,通过提高应力和减小晶粒尺寸,促进锥面位错形核和滑移,提高Mg的塑性,为完善Mg的塑性变形理论提供了重要的实验证据,为高塑性镁合金的开发提供了新的技术途径[7]。
(4) 采用原位同步辐射X射线衍射和电子显微镜高通量表征技术,发现高压变形Ni纳米晶的强度随晶粒尺寸的减小而持续升高,当晶粒尺寸减小到3 nm时,Ni超细纳米晶的屈服强度高达4.2 GPa (是商业Ni的10倍);提出了高压细晶强化新机制,为制备超高强金属材料开辟了新的方向[8]。
(5) 发展了自动计算材料拓扑性质的新方法,根据晶体材料能带中高对称点能带的对称性,预测了拓扑不变量的部分甚至全部信息,在近4万种材料中发现了8000余种拓扑材料,十几倍于过去十几年间找到的拓扑材料总和,为发现新拓扑材料提供了理论依据和重要线索[9]。
(6) 基于对称指标理论,发展了新的高效寻找拓扑材料的理论方法,系统地搜索了庞大的材料数据库,发现了大量拓扑材料,提供了下一代电子设备用拓扑材料的可能性[10]。
(7) 利用高通量制备技术,通过Na与Ag的合金化和Bi的痕量掺杂,实现了高效稳定非铅双钙钛矿Cs2AgInCl6单基质白光发光,突破了白光荧光粉近半个世纪的效率瓶颈,厘清了自限域激子在双钙钛矿中的发光机制,为非铅钙钛矿发光材料的研究提供了新思路[11]。
(8) 采用高通量物性计算和数据驱动的机器学习,以及高通量单晶和薄膜生长及光电测试技术,研发出更高效、更稳定的有机无机杂化平面结构钙钛矿太阳能电池,转换效率在2017年达20.9%,2018年达23.3%,连续两年居全球同类电池中最高效率,打破了英国、韩国和瑞士在这一研究领域的领先地位[12]。
(9) 应用材料基因工程原位高通量实验方法,结合电化学石英晶体微天平定量、原位测量的特点,以及原子力显微镜的原子精度形貌表征技术,在常规电解质中研究了纳米石墨电极上固体电解质(SEI)膜的形成过程,首次定量观察并提出了SEI形成机制,为设计更高性能的SEI膜,提高锂电池性能提供了理论基础[13]。
(10) 运用现代大科学装置高效表征方法,原位研究了充放电过程中物质结构演化、过渡金属溶解与循环稳定性的相关性;以尖晶石锰酸锂(LiMn2O4)作为模型系统,对正极材料的结构演变与过渡金属溶解现象,以及循环稳定性进行了深入的探究,提出了抑制结构不可逆演变的措施[14]。
(11) 相场理论与高通量计算相结合,构建了电热耦合击穿模型,用于定量计算聚合物基电介质介电击穿的热效应,优化设计了三明治叠层结构的高能量密度聚合物基纳米复合材料,储能密度提高2.44倍;基于高通量计算筛选,制备出了P(VDF-HFP)-Al2O3复合电介质,击穿场强提高43%[15]。
(12) 通过计算模拟与电镜实验,研究了通过远程调控技术外延生长的金属卤化物钙钛矿薄膜和VO2薄膜的结构和性质,揭示了远程调控外延生长中薄膜与衬底的弱相互作用和薄膜中低缺陷密度的机制,为设计和提高光电功能器件的性能提供理论指导[16]。
(13) 基于材料基因工程技术,通过高通量计算筛选及实验验证,获得具有优异抗肿瘤活性的纳米羟基磷灰石粒子,体外肿瘤细胞增殖抑制率>60%,体内肿瘤组织生长抑制率>70%;与骨诱导性多孔钛支架复合,研发出具有抗肿瘤活性的新型骨再生修复材料[17]。
3.2 关键技术与装备研发
在材料基因工程关键技术、软件和装备研发方面,研发出了材料高通量计算设计软件,填补了国内空白;研发出了一批具有自主知识产权的材料基因工程关键技术装备,提高了材料制备与表征评价的实验效率;研发出了材料基因工程理念的数据库和材料大数据技术,为材料数据库的规模化建设和应用提供了技术支持和示范;推动了材料人工智能技术的发展与应用。
图3
图3
激光分子束外延-扫描隧道显微镜(STM)高通量制备与表征系统[26]
Fig.3
High-throughput preparation and characterization system of laser molecular beam epitaxy-scanning tunneling microscopy (STM)[26]
(a) experimental equipment for high-throughput preparation and characterization
(b) schematic of high-throughput preparation for combinatorial film chip
(c) in-situ STM photograph of Fe-based superconducting film prepared by high-throughput technology
(d) micro-area resistance of combinatorial film chip with gradient thickness (28 nm→280 nm, T—temperature)
(e) XRD spectra of combinatorial film chip with gradient deposition temperature Ts (350 ℃→600 ℃)
(f) micro-area temperature dependence of resistance R(T) for combinatorial film chip with gradient superconducting transition temperature
图4
图5
图5
机器学习方法发现新型高强高导铜合金[39]
Fig.5
New high-strength and high-electrical conductivity copper alloys discovered by the machine learning design system (MLDS) (C2P: prediction model from composition to performance; P2C: prediction model from performance to composition)[39](a) machine learning strategy for performance-oriented alloys design(b) electrical conductivity vs ultimate tensile strength of the new copper alloys discovered by the machine learning method
3.3 工程化应用示范
在材料基因工程关键技术工程化应用方面取得明显进展。利用高通量实验装置,筛选出了具有自主知识产权和工业应用前景的新型催化材料;综合利用理性设计-高效实验-大数据技术,优化了特种合金工艺,提升了产品性能和质量,推动了复合材料在航空航天领域的应用,促进了发光材料和稀土永磁材料的市场化进程。材料基因工程在加速新材料产品研发和工程化应用中展现出了巨大的潜力。
3.3.1 催化材料
3.3.2 特种合金材料
(1) 采用机器学习成分设计与筛选,结合高通量制备与表征技术,研发出了第二代耐热腐蚀镍基单晶高温合金(DD489),综合性能达到并部分超过国外同类合金,试制出了大尺寸重型燃气轮机单晶高温合金复杂空心涡轮叶片典型件;通过高通量模拟计算与机器学习,优化了K403精铸涡轮叶片生产工艺,叶片合格率从90%提高到95%。
(3) 探明了镁合金强韧化基因元,通过高通量计算与实验结合,构建了镁合金设计基础参数数据库,开发出了工艺-组织/缺陷-性能模拟集成计算平台,通过成分和铸造工艺优化,研制出XXX型号用Mg-Gd-Y合金电子舱铸件,通过了静力试验考核和飞行试验考核。
(4) 综合利用高通量计算、数据库技术、机器学习、高通量实验方法、高效评价方法和多尺度材料组织性能模拟技术,对高铁车轴钢、液化天然气(LNG)用低温钢的成分与组织进行优化设计,显著提高了研发效率,提升了综合性能,成功研发出400 km/h高铁车轴钢,并在国内首次试制出车轴典型构件。
3.3.3 复合材料
(1) 研发出高性能环氧树脂基复合材料高通量多尺度计算和热压工艺模拟计算平台,实现了103级模拟计算设计;开发出了新型EP-G1/CCF800H碳纤维复合材料,优化了复合材料翼梁固化变形和厚度控制技术,制造出了1 m级飞机复合材料C型尾翼梁试验件,试验件内、外部质量满足型号技术要求。
(2) 利用材料高通量表征和模拟技术,优化了SiCw/Al复合材料组分、热加工和热处理工艺,成功制造出长度达3.8 m级臂杆组件[49];设计研发出多种铝基复合材料,实现大尺寸(投影面积达2 m2)、吨级坯料制备,产品在高技术领域获得应用。
(3) 综合应用陶瓷基复合材料高通量设计、制备工艺仿真模拟,材料高通量制备、虚拟评价及耦合环境下的高通量表征手段,实现了陶瓷基复合材料高通量可控制备,显著提升了SiC/SiC复合材料的性能,制备出航空发动机SiC/SiC密封调节片典型样件。
3.3.4 稀土功能材料
(1) 开发了103个样品/批次高通量制备技术,筛选出高热导率Ce∶YAG透明荧光陶瓷,取代传统“荧光粉+胶”材料[50];基于透明荧光陶瓷封装,开发出超大功率发光二极管(LED)器件封装核心技术,单颗光源芯片功率1200 W、光通量16.8×104 lm;通过美国LM-80能源之星、韩国KCC、日本PSE认证,成为国际首家量产1000 W级光源芯片,功率及性能远超日本西铁城(500 W),处于国际领先。
(2) 建立了相图热力学数据库与材料数据库[51],利用机器学习技术对材料成分/性能/成本进行设计预测,优化了铈基、镧/铈基、钇基等高丰度稀土磁体的成分结构和制备工艺,开发出满足应用需求的高性能高丰度稀土永磁系列产品,实现5000 t级生产,累计经济效益6亿元人民币,推动了高丰度稀土的平衡利用。
3.3.5 生物医用材料
(1) 构建了高通量计算与数据分析一体化平台,开发了高通量实验装置,实现基于高通量筛选的抗肿瘤纳米材料全链条研发,筛选出具有优异抗肿瘤作用的纳米羟基磷灰石粒子,体内外实验证实其具有优异的抗肿瘤活性,编制了产品技术要求,完成动物实验评价,仅用2年多时间进入产品注册检验和临床新技术伦理申请阶段。
(2) 采用高通量第一性原理计算,高效筛选和制备出了具有自主知识产权的可降解镁合金支架材料Mg-Zn-Y-Nd,主要力学性能和均匀降解行为优于市场WE43镁合金,稀土含量仅为其1/7,显著降低了潜在的稀土毒性[52];将应力耦合的全降解支架有限元计算和高通量血管支架近生理加速疲劳实验联动,筛选出的聚合物血管支架大动物体内实验结果优于商业Firebird2TM支架。
3.3.6 核材料与服役安全
(1) 融合有限元模拟与机器学习,构建了新型复合燃料热导率预测模型,优化复合燃料成分与组织结构[53],利用陶瓷高通量制备与高通量表征平台,实现了新型核燃料(UO2-BeO复合燃料)从高通量设计- 高通量制备-高通量表征-服役性能评价-入堆考核的全链条高效研发,从设计到入堆考核周期不到 2年(国际上通常需要10年左右)。
(2) 研发出了重离子辐照高通量评价与应力腐蚀/环境疲劳高通量评价方法,显著提升了核电关键材料服役性能数据的获取效率;构建了核电关键材料基因工程数据库,利用机器学习技术,建立了核电重要部件服役寿命预测模型,在大亚湾核电厂延寿论证中开展应用验证。
3.4 带动地方创新平台建设和专项研究
在上海市的支持下,2015年4月由上海大学牵头联合中国科学院硅酸盐研究所、上海交通大学等7家单位率先成立了上海材料基因组工程研究院;2015年5月,北京市批准依托北京科技大学建设材料基因工程北京市重点实验室;2017年4月,中国科学院物理研究所牵头,在北京怀柔科学城建设了材料基因工程平台,总投资5.6亿元人民币;2017年10月,由北京科技大学牵头,联合北京信息科技大学等4家单位成立了北京材料基因工程高精尖创新中心,目的是汇聚该领域高端人才,开展前沿研究,中心建设2年多来获得了丰硕的成果;2017年云南省设立“稀贵金属材料基因工程专项”重大科技专项;2017年深圳立项建设材料基因组工程大科学平台,总投资7.1亿元人民币;2018年广东省设立“材料基因工程”重点领域研发计划。地方、部门和企业的积极参与和大力支持,为我国材料基因工程的可持续发展奠定了良好的基础。
3.5 引领学科发展,推动创新人才培养
材料基因工程的研究和发展丰富了材料科学与工程学科内涵,推动了多学科交叉发展,形成了材料学科的重要发展方向。通过强化材料学科学生的计算机应用水平,加强计算材料学的教学,将数据科学和人工智能技术融入培养方案,有效地推动了材料科技创新人才的培养。
北京科技大学开设了材料基因工程研究生系列课程,上海大学设立了材料基因工程本科生专业,上海交通大学、四川大学、北京航空航天大学、南方科技大学等许多高校开设了相关课程,推动了材料基因工程专业人才的培养;中国金属学会等开设了材料基因工程技术的系列培训,有力地推动了基因工程新思想和新理念的传播。
3.6 活跃学术氛围,促进国际交流
材料基因工程的研究,对于营造活跃的学术交流氛围,促进国际交流起到重要的作用。2014年以来,我国在“新材料国际发展趋势高层论坛”和“国际冶金及材料分析测试学术会议”上设有材料基因工程分会场;2017年11月21~23日,在广州召开了首届材料基因工程高层论坛,吸引了32位材料领域的海内外院士和520名知名专家学者参加;2018年10月14~16日,在北京召开了第二届材料基因工程高层论坛,40位材料领域的院士和近1000名国内外知名专家学者参加;作为中国工程院工程科技战略高端论坛,第三届材料基因工程高层论坛于2019年11月在云南昆明召开,36位材料领域的院士、40位海外学者和1100多名国内知名专家学者参加。材料基因工程高层论坛已经逐渐发展成为具有较大国际影响的高水平学术交流平台。
世界集成计算材料工程(ICME)大会是国际材料基因工程最具影响力的学术会议之一,2019年北京材料基因工程高精尖创新中心成为ICME2019大会的重要支持单位,我国多位知名专家受邀担任大会国际顾问、大会组委会委员、做大会报告或邀请报告,体现了我国在国际材料基因工程研究领域的地位和影响力。
4 未来发展方向建议
4.1 前沿技术发展与创新平台建设
发展材料基因工程颠覆性前沿技术,强化我国在材料高通量制备与表征、服役行为高效评价技术和数据标准等领域的优势。突破材料高效计算和设计基础软件、大规模材料数据生产与数据库建设等短板,建设材料原始创新的技术体系。通过资源整合、统筹规划、分步实施,建设一批国际一流的材料基因工程创新平台;调动部门和地方的积极参与,通过材料基因工程创新平台的有机融合、协同创新,建成若干国家/区域材料基因工程融合创新中心,形成材料基因工程协同创新网络,完善新材料原始创新的基础设施和科技条件,将会大幅度提升新材料领域的原始创新能力和水平。
4.2 材料人工智能技术的研发与应用
材料基因工程有效地推动了大数据和人工智能技术在材料领域的发展和应用,将传统研发模式中较少考虑的变量引入到材料设计,增加了发现新材料和新功能的可能性,数据的应用与共享成为材料基因工程领域最具开拓性和重要性的部分,数据驱动有望成为未来新材料研发的主要模式,即材料科学研究的“第四范式”。
大力发展材料人工智能技术,结合计算机科学、互联网和云计算等先进技术,研发材料高效计算、高通量实验和材料数据融合的一体化技术,构建材料科学理论、大数据、人工智能协同驱动的材料研发新技术,形成以材料高效计算、高通量实验为数据生产和数据供给,材料大数据与人工智能技术协同驱动的材料创新体系和智能研发新模式,将会极大地促进新材料领域的发展。
4.3 材料基因工程关键技术工程化应用
大力推广和应用材料基因工程先进技术,利用创新平台,促进材料基因工程关键技术和方法在材料研发周期内全链条的深度交叉融合、产学研用的高效协同创新,提升新材料和新工艺技术的研发、应用水平和效率,促进高端制造业和高新技术关键材料的发展,增强高端关键材料的自主保障能力。在材料研发与应用全链条推广应用材料基因工程的新理念和新技术,提高高端制造业关键材料研发、生产、应用的水平,提升战略前沿新材料的自主创新能力,是我国未来材料基因工程发展的核心目标。
4.4 创新人才培养
材料基因工程的发展推动了材料科学与工程教育体系的变革,形成以材料科学理论、计算材料学、材料信息学等有机融合的材料学科新体系和人才培养新模式。培养和造就一批具有材料基因工程新思想、新理念,掌握新方法和关键技术的创新人才队伍,为我国材料产业的创新发展奠定人才基础和优势,成为未来材料领域人才培养的核心任务。
5 结语
材料基因工程研究有力地推动了我国材料科技领域前沿共性关键技术、前沿新材料的研究和发展,推动了材料基因工程新理念和新方法的形成和发展,促进了材料科技前沿技术发展。尤其是材料基因工程国家重点专项的实施,产出了一批原创性的基础理论和关键技术,研制出了一批具有自主知识产权的装备,一批研究成果获得工程化应用,为提升我国在材料科技前沿领域的研究水平和地位,打下了坚实的基础。未来,将以建设材料基因工程创新平台、综合型创新人才培养、工程化应用为核心,推动材料基因工程的发展与应用,通过变革材料“试错法”的研发模式,促进新材料产业的快速发展。
参考文献
Materials genome initiative for global competitiveness
[EB/OL]. (
Materials Genome Initiative—Strategic Plan
[EB/OL]. (
Economic analysis of national needs for technology infrastructure to support the materials genome initiative
[EB/OL]. (
Creating the next-generation materials genome initiative workforce
[EB/OL]. (
High-temperature bulk metallic glasses developed by combinatorial methods
[J].Since their discovery in 1960(1), metallic glasses based on a wide range of elements have been developed(2). However, the theoretical prediction of glass-forming compositions is challenging and the discovery of alloys with specific properties has so far largely been the result of trial and error(3-8). Bulk metallic glasses can exhibit strength and elasticity surpassing those of conventional structural alloys(9-11), but the mechanical properties of these glasses are critically dependent on the glass transition temperature. At temperatures approaching the glass transition, bulk metallic glasses undergo plastic flow, resulting in a substantial decrease in quasi-static strength. Bulk metallic glasses with glass transition temperatures greater than 1,000 kelvin have been developed, but the supercooled liquid region (between the glass transition and the crystallization temperature) is narrow, resulting in very little thermoplastic formability, which limits their practical applicability. Here we report the design of iridium/nickel/tantalum metallic glasses (and others also containing boron) with a glass transition temperature of up to 1,162 kelvin and a supercooled liquid region of 136 kelvin that is wider than that of most existing metallic glasses(12). Our Ir-Ni-Ta-(B) glasses exhibit high strength at high temperatures compared to existing alloys: 3.7 gigapascals at 1,000 kelvin(9,13). Their glass-forming ability is characterized by a critical casting thickness of three millimetres, suggesting that small-scale components for applications at high temperatures or in harsh environments can readily be obtained by thermoplastic forming(14). To identify alloys of interest, we used a simplified combinatorial approach(6-8) harnessing a previously reported correlation between glass-forming ability and electrical resistivity(15-17). This method is non-destructive, allowing subsequent testing of a range of physical properties on the same library of samples. The practicality of our design and discovery approach, exemplified by the identification of high-strength, high-temperature bulk metallic glasses, bodes well for enabling the discovery of other glassy alloys with exciting properties.
Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes
[J].Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle(1-3). Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening(4,5), such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs)(6-10). The tensile strength is enhanced (by 48.5 +/- 1.8 per cent) and ductility is substantially improved (by 95.2 +/- 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength-ductility trade-off(11). The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs(12), by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank-Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations(13) do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials.
Large plasticity in magnesium mediated by pyramidal dislocations
[J].Lightweight magnesium alloys are attractive as structural materials for improving energy efficiency in applications such as weight reduction of transportation vehicles. One major obstacle for widespread applications is the limited ductility of magnesium, which has been attributed to [Formula: see text] dislocations failing to accommodate plastic strain. We demonstrate, using in situ transmission electron microscope mechanical testing, that [Formula: see text] dislocations of various characters can accommodate considerable plasticity through gliding on pyramidal planes. We found that submicrometer-size magnesium samples exhibit high plasticity that is far greater than for their bulk counterparts. Small crystal size usually brings high stress, which in turn activates more [Formula: see text] dislocations in magnesium to accommodate plasticity, leading to both high strength and good plasticity.
High-pressure strengthening in ultrafine-grained metals
[J].
Catalogue of topological electronic materials
[J].
Comprehensive search for topological materials using symmetry indicators
[J].Over the past decade, topological materials-in which the topology of electron bands in the bulk material leads to robust, unconventional surface states and electromagnetism-have attracted much attention. Although several theoretically proposed topological materials have been experimentally confirmed, extensive experimental exploration of topological properties, as well as applications in realistic devices, has been restricted by the lack of topological materials in which interference from trivial Fermi surface states is minimized. Here we apply our method of symmetry indicators to all suitable nonmagnetic compounds in all 230 possible space groups. A database search reveals thousands of candidate topological materials, of which we highlight 241 topological insulators and 142 topological crystalline insulators that have either noticeable full bandgaps or a considerable direct gap together with small trivial Fermi pockets. Furthermore, we list 692 topological semimetals that have band crossing points located near the Fermi level. These candidate materials open up the possibility of using topological materials in next-generation electronic devices.
Efficient and stable emission of warm-white light from lead-free halide double perovskites
[J].
Surface passivation of perovskite film for efficient solar cells
[J].
In situ quantification of interphasial chemistry in Li-ion battery
[J].The solid-electrolyte interphase (SEI) is probably the least understood component in Li-ion batteries. Considerable effort has been put into understanding its formation and electrochemistry under realistic battery conditions, but mechanistic insights have mostly been inferred indirectly. Here we show the formation of the SEI between a graphite anode and a carbonate electrolyte through combined atomic-scale microscopy and in situ and operando techniques. In particular, we weigh the graphitic anode during its initial lithiation process with an electrochemical quartz crystal microbalance, which unequivocally identifies lithium fluoride and lithium alkylcarbonates as the main chemical components at different potentials. In situ gas analysis confirms the preferential reduction of cyclic over acyclic carbonate molecules, making its reduction product the major component in the SEI. We find that SEI formation starts at graphite edge sites with dimerization of solvated Li(+) intercalation between graphite layers. We also show that this lithium salt, at least in its nascent form, can be re-oxidized, despite the general belief that an SEI is electrochemically inert and its formation irreversible.
Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery
[J].Historically long accepted to be the singular root cause of capacity fading, transition metal dissolution has been reported to severely degrade the anode. However, its impact on the cathode behavior remains poorly understood. Here we show the correlation between capacity fading and phase/surface stability of an LiMn2O4 cathode. It is revealed that a combination of structural transformation and transition metal dissolution dominates the cathode capacity fading. LiMn2O4 exhibits irreversible phase transitions driven by manganese(III) disproportionation and Jahn-Teller distortion, which in conjunction with particle cracks results in serious manganese dissolution. Meanwhile, fast manganese dissolution in turn triggers irreversible structural evolution, and as such, forms a detrimental cycle constantly consuming active cathode components. Furthermore, lithium-rich LiMn2O4 with lithium/manganese disorder and surface reconstruction could effectively suppress the irreversible phase transition and manganese dissolution. These findings close the loop of understanding capacity fading mechanisms and allow for development of longer life batteries.
Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics
[J].Understanding the breakdown mechanisms of polymer-based dielectrics is critical to achieving high-density energy storage. Here a comprehensive phase-field model is developed to investigate the electric, thermal, and mechanical effects in the breakdown process of polymer-based dielectrics. High-throughput simulations are performed for the P(VDF-HFP)-based nanocomposites filled with nanoparticles of different properties. Machine learning is conducted on the database from the high-throughput simulations to produce an analytical expression for the breakdown strength, which is verified by targeted experimental measurements and can be used to semiquantitatively predict the breakdown strength of the P(VDF-HFP)-based nanocomposites. The present work provides fundamental insights to the breakdown mechanisms of polymer nanocomposite dielectrics and establishes a powerful theoretical framework of materials design for optimizing their breakdown strength and thus maximizing their energy storage by screening suitable nanofillers. It can potentially be extended to optimize the performances of other types of materials such as thermoelectrics and solid electrolytes.
Carrier lifetime enhancement in halide perovskite via remote epitaxy
[J].Crystallographic dislocation has been well-known to be one of the major causes responsible for the unfavorable carrier dynamics in conventional semiconductor devices. Halide perovskite has exhibited promising applications in optoelectronic devices. However, how dislocation impacts its carrier dynamics in the 'defects-tolerant' halide perovskite is largely unknown. Here, via a remote epitaxy approach using polar substrates coated with graphene, we synthesize epitaxial halide perovskite with controlled dislocation density. First-principle calculations and molecular-dynamics simulations reveal weak film-substrate interaction and low density dislocation mechanism in remote epitaxy, respectively. High-resolution transmission electron microscopy, high-resolution atomic force microscopy and Cs-corrected scanning transmission electron microscopy unveil the lattice/atomic and dislocation structure of the remote epitaxial film. The controlling of dislocation density enables the unveiling of the dislocation-carrier dynamic relation in halide perovskite. The study provides an avenue to develop free-standing halide perovskite film with low dislocation density and improved carried dynamics.
Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect
[J].Chiral fermions in solid state feature
Electronic structure and multi-scale behaviour for the dislocation-doping complex in the gamma phase of nickel-base superalloys
[J].
Transition-metal alloying of γ'-Ni3Al: Effects on the ideal uniaxial compressive strength from first-principles calculations
[J].
2D intrinsic ferromagnets from van der Waals antiferromagnets
[J].Intrinsically ferromagnetic 2D semiconductors are essential and highly sought for nanoscale spintronics, but they can only be obtained from ferromagnetic bulk crystals, while the possibility to create 2D intrinsic ferromagnets from bulk antiferromagnets remains unknown. Herein on the basis of ab initio calculations, we demonstrate this feasibility with the discovery of intrinsic ferromagnetism in an emerging class of single-layer 2D semiconductors CrOX (CrOCl and CrOBr monolayers), which show robust ferromagnetic ordering, large spin polarization, and high Curie temperature. These 2D crystals promise great dynamical and thermal stabilities as well as easy experimental fabrication from their bulk antiferromagnets. The Curie temperature of 2D CrOCl is 160 K, which exceeds the record (155 K) of the most-studied dilute magnetic GaMnAs materials, and could be further enhanced by appropriate strains. Our study offers an alternative promising way to create 2D intrinsic ferromagnets from their antiferromagnetic bulk counterparts and also renders 2D CrOX monolayers great platform for future spintronics.
Cu single atoms on Ti2CO2 as a highly efficient oxygen reduction catalyst in a proton exchange membrane fuel cell
[J].
A device for high throughput preparation of multicomponent gradient metal materials
[P].
一种高通量制备多组分梯度金属材料的装置
[P].
A high-throughput methodology search for the optimum cooling rate in an advanced polycrystalline nickel base superalloy
[J].
Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy
[J].In order to obtain a fundamental understanding of the interplay between charge, spin, orbital and lattice degrees of freedom in magnetic materials and to predict and control their physical properties(1-3), experimental techniques are required that are capable of accessing local magnetic information with atomic-scale spatial resolution. Here, we show that a combination of electron energy-loss magnetic chiral dichroism (4) and chromatic-aberration-corrected transmission electron microscopy, which reduces the focal spread of inelastically scattered electrons by orders of magnitude when compared with the use of spherical aberration correction alone, can achieve atomic-scale imaging of magnetic circular dichroism and provide element-selective orbital and spin magnetic moments atomic plane by atomic plane. This unique capability, which we demonstrate for Sr2FeMoO6, opens the door to local atomic-level studies of spin configurations in a multitude of materials that exhibit different types of magnetic coupling, thereby contributing to a detailed understanding of the physical origins of magnetic properties of materials at the highest spatial resolution.
Rafting-enabled recovery avoids recrystallization in 3D-printing-repaired single-crystal superalloys
[J].
Combinatorial laser molecular beam epitaxy system integrated with specialized low-temperature scanning tunneling microscopy
[J].We present a newly developed facility comprising a combinatorial laser molecular beam epitaxy system and an in situ scanning tunneling microscope (STM). This facility aims at accelerating the materials research in a highly efficient way by advanced high-throughput film synthesis techniques and subsequent fast characterization of surface morphology and electronic states. Compared with uniform films deposited by conventional methods, the so-called combinatorial thin films will be beneficial in determining the accurate phase diagrams of different materials due to the improved control of parameters such as chemical substitution and sample thickness resulting from a rotary-mask method. A specially designed STM working under low-temperature and ultrahigh vacuum conditions is optimized for the characterization of combinatorial thin films in an XY coarse motion range of 15 mm x 15 mm with submicrometer location precision. The overall configuration and some key aspects such as the sample holder design, scanner head, and sample/tip/target transfer mechanism are described in detail. The performance of the device is demonstrated by synthesizing high-quality superconducting FeSe thin films with gradient thickness and imaging surfaces of highly oriented pyrolytic graphite, Au (111), Bi2Sr2CaCu2O8+delta (BSCCO), and FeSe. In addition, we also have obtained clean noise spectra of tunneling junctions and the superconducting energy gap of BSCCO. The successful manufacturing of such a facility opens a new window for the next generation equipment designed for experimental materials research.
Recent advances in high-throughput superconductivity research
[J].
CdS/Au/Ti/Pb(Mg1/3Nb2/3)0.7-Ti0.3O3 photocatalysts and biphotoelectrodes with ferroelectric polarization in single domain for efficient water splitting
[J].
Synchrotron radiation-based materials characterization techniques shed light on molten salt reactor alloys
[J].
Simultaneous determination of virtual fields and material parameters for thermo-mechanical coupling deformation in orthotropic materials
[J].
Evaluation of service conditions of high pressure turbine blades made of DS Ni-base superalloy by artificial neural networks
[J].
MatCloud: A high-throughput computational infrastructure for integrated management of materials simulation, data and resources
[J].
OCPMDM: Online computation platform for materials data mining
[J].
Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach
[J].
Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
[J].Rapidly discovering functional materials remains an open challenge because the traditional trial-and-error methods are usually inefficient especially when thousands of candidates are treated. Here, we develop a target-driven method to predict undiscovered hybrid organic-inorganic perovskites (HOIPs) for photovoltaics. This strategy, combining machine learning techniques and density functional theory calculations, aims to quickly screen the HOIPs based on bandgap and solve the problems of toxicity and poor environmental stability in HOIPs. Successfully, six orthorhombic lead-free HOIPs with proper bandgap for solar cells and room temperature thermal stability are screened out from 5158 unexplored HOIPs and two of them stand out with direct bandgaps in the visible region and excellent environmental stability. Essentially, a close structure-property relationship mapping the HOIPs bandgap is established. Our method can achieve high accuracy in a flash and be applicable to a broad class of functional material design.
Machine learning assisted design of high entropy alloys with desired property
[J].
Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models
[J].
Machine learning assisted design of γ′-strengthened Co-base superalloys with multi- performance optimization
[J].
A property-oriented design strategy for high performance copper alloys via machine learning
[J].
Data+AI: The core of materials genomic engineering
[J].
数据+人工智能是材料基因工程的核心
[J].
Controllable direct-syntheses of delaminated MWW-type zeolites
[J].
Development of zeolite catalysts for production of ethylbenzene
[J].
Synthesis and structure determination of large-pore zeolite SCM-14
[J].SCM-14 (Sinopec Composite Material No. 14), a new stable germanosilicate zeolite with a 12x8x8-ring channel system, was synthesized using commercially available 4-pyrrolidinopyridine as organic structure-directing agents (OSDAs) in fluoride medium. The framework structure of SCM-14 was determined using rotation electron diffraction (RED), and refined against synchrotron X-ray powder diffraction (SXPD) data for both as-made and calcined materials. The framework structure of SCM-14 is closely related to that of three known zeolites: mordenite (MOR), GUS-1 (GON), and IM-16 (UOS). SCM-14 has the same projection as that of mordenite and GUS-1 when viewed along the 12-ring channels, and possesses two more straight 8-ring channels running perpendicular to the 12-ring channels. The structure of SCM-14 can be constructed by either the same layers as that of GUS-1 or the same columns as that of IM-16. Based on their structural relationship, three topologically reasonable hypothetical zeolites were predicted.
Synthesis and structure determination of SCM-15: A 3D large pore zeolite with interconnected straight 12×12×10-ring channels
[J].A new germanosilicate zeolite named SCM-15 (Sinopec Composite Material No. 15), the first zeolite containing a 3-dimensional (3D) channel system with interconnected 12-, 12-, and 10-ring channels (pore sizes: 6.1x7.2, 6.1x7.4, and 5.2x5.9 A), has been synthesized using neutral 4-pyrrolidinopyridine as organic structure-directing agents (OSDAs). Its structure has been determined by combining single-crystal electron diffraction (SCED) and synchrotron powder X-ray diffraction (SPXD) data. The unique open framework structure of SCM-15 is related to that of FOS-5 (BEC), ITQ-7 (ISV), PKU-16 (POS), ITQ-26 (IWS), ITQ-21, Beta polymorph B, and SU-78B, since all these framework structures can be constructed from similar chains which are connected through shared 4-ring or double 4-ring (d4r) units. Based on this relation, six topologically reasonable 3D large or extra-large pore hypothetical zeolites are predicted.
Linear-superelastic metals by controlled strain release via nanoscale concentration-gradient engineering
[J].
Dynamic recrystallization initiated by direct grain reorientation at high-angle grain boundary in α-titanium
[J].
Hot deformation behavior originated from dislocation activity and β to α phase transformation in a metastable β titanium alloy
[J].
Progress in high throughput fabrication and characterization of metal matrix composites
[J].The "material genetic engineering" plan, based on the large data, is to investigate the high throughput design, fabrication and characterization techniques with the aim to shift the material research from traditional mode to high throughput mode with low cost and fast response speed, and to accelerate the research and development of new materials and achieve the goal of "double reduction halves". As the metal matrix composites (MMCs) exhibit multi-components and a thermodynamically non-equilibrium state during fabrication, some key issues occur and need to be addressed including: (1) for high throughput fabrication, currently developed high throughput technologies based on thermodynamically equilibrium conditions, such as spray printing and multi-node diffusion methods, are not applicable for MMCs; (2) for high throughput characterization, there is a lack of multi- dimensional, field and scale acquisition technique for the composition, morphology, microstructure and property of MMCs. In order to solve these problems, the progress on the research and development of high throughput fabrication and characterization techniques of MMCs was reviewed, especially, in the field of gradient reinforced MMCs and their high throughput combination characterization methods, which may promote the application of high throughput fabrication and characterization techniques in MMCs. Finally, the bottlenecks and prospects in the high throughput fabrication and characterization of MM Cs are proposed.
金属基复合材料高通量制备及表征技术研究进展
[J].“材料基因工程”计划是以大数据作为支撑,采用高通量设计、制备和表征技术,促使材料研究从传统的试错模式转向低成本、快速响应的新模式,从而加快新材料的研发速度,实现研发成本和周期“双减半”的目标。金属基复合材料由于组分复杂、制备过程为热力学非平衡状态,带来一些新的问题需要解决,包括:(1) 高通量制备方法方面,针对合金块体样品开发的喷印合成法、多元结扩散法等基于热力学平衡理论的高通量制备技术无法直接用于金属基复合材料构件块体坯料的制造;(2) 高通量表征技术方面,缺乏针对金属基复合材料单一样品成分、形貌、组织、结构和性能的多维、多场、多尺度同步采集技术,以及针对阵列样品成分、形貌、组织与结构的快速表征技术。鉴于上述问题,本文综述了金属基复合材料高通量制备及表征技术发展现状及已取得的进展,特别是在增强体呈梯度分布的金属基复合材料制备技术与高通量组合表征方法上取得的突破,推动了高通量制备及表征技术在金属基复合材料领域的应用。最后指出了金属基复合材料高通量计算、制备方法和表征技术方面存在的瓶颈问题,并对高通量制备与表征技术的发展进行了展望。
Application of composite phosphor ceramics by tape-casting in white light-emitting diodes
[J].
Phase diagrams of permanent magnet alloys: Binary rare earth alloy systems
[J].
Microstructure, mechanical properties and deformation mechanisms of an as-cast Mg-Zn-Y-Nd alloy for stent applications
[J].
/
〈 |
|
〉 |
