Please wait a minute...
金属学报  2017, Vol. 53 Issue (4): 487-493    DOI: 10.11900/0412.1961.2016.00388
  本期目录 | 过刊浏览 |
高浓度、高性能Pd胶体的制备及其活化机理
屈硕硕1,2,祝清省2(),巩亚东1,杨玉莹1,李财富2,高世安2
1 东北大学机械工程与自动化学院 沈阳 110819
2 中国科学院金属研究所沈阳材料科学国家(联合)实验室 沈阳 110016
Preparation and Activation Mechanism of Pd Colloid with High Concentration and Performance
Shuoshuo QU1,2,Qingsheng ZHU2(),Yadong GONG1,Yuying YANG1,Caifu LI2,Shian GAO2
1 School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

屈硕硕,祝清省,巩亚东,杨玉莹,李财富,高世安. 高浓度、高性能Pd胶体的制备及其活化机理[J]. 金属学报, 2017, 53(4): 487-493.
Shuoshuo QU, Qingsheng ZHU, Yadong GONG, Yuying YANG, Caifu LI, Shian GAO. Preparation and Activation Mechanism of Pd Colloid with High Concentration and Performance[J]. Acta Metall Sin, 2017, 53(4): 487-493.

全文: PDF(5670 KB)   HTML
摘要: 

通过一种小体积、连续性还原反应方法,制备出高浓度、大体积胶体Pd活化液,并采用SEM、TEM、XRD和XPS等手段表征其形貌、结构及元素组成特征,采用化学镀Cu及其电化学测试研究胶体的催化性能。结果表明:该方法能够制备出平均粒径低于4 nm且分布均匀的Pd胶核颗粒;在Pd含量低于25 mg/L时,活化液仍具有化学镀催化性能。研究发现:Pd胶团的外壳结构对活化能力起着重要作用,胶团外壳由Sn2+、Sn4+及Cl-等组成,可形成2种络合体结构,即[PdSn2]Cl6和[PdSn3]Cl8,由于[PdSn3]Cl8在解胶中不能水解,可导致胶团丧失活性。该制备方法可减少[PdSn3]Cl8胶团结构的发生,提高了Pd胶体的活化性能。

关键词 Pd胶体化学镀活化    
Abstract

The non-conductive substrate is often metallized through electroless plating method. Prior to the electroless plating, the substrate surfaces need to be firstly Pd activation pre-treated. The traditional "two-step" activation process, i.e., sensitization-activation, has been gradually obsoleted because of poor controllability and uniformity. A "one-step" activation process using Pd colloid has been widely used in industry, especially for the microvia metallization treatment in printed circuit board (PCB) fabrication. The bottleneck problem of this technology is the preparation of the Pd colloid solution with high concentration and excellent catalytic activity. The aim of this work is to develop a preparation method of the Pd colloid with high concentration and high quality. Pd colloid was prepared by a continuous reduction reaction with minor content. By mean of this process, the Pd concentration of the prepared colloid can exceed 2%. The morphology, microstructure and composition of the Pd colloid were characterized by SEM, TEM, XRD and XPS, respectively. The activate ability of the Pd colloid was examined by electroless Cu and electrochemical test. It was found that the average diameter of the Pd particles was less than 4 nm. Even if the concentration of Pd was less than 25 mg/L, this Pd colloid still had good activation ability for electro less Cu. The result demonstrated that the shell structure of the Pd micelle played a key role for the activation ability. The shell of Pd micelle was consisted of Sn2+, Sn4+ and Cl-, and generally formed two structures, [PdSn2]Cl6 and [PdSn3]Cl8. For the structure of [PdSn3]Cl8, the failure of the hydrolysis could lead to the loss of activation. The preparation method in this work can effectively avoid the occurrence of [PdSn3]Cl8, which greatly improved the activation ability of the Pd colloid.

Key wordsPd colloidal    electroless Cu    activation
收稿日期: 2016-08-26     
基金资助:国家自然科学基金项目No.51471180和沈阳市科技计划项目No.F16-205-1-18
图1  Pd胶体制备装置示意图
图2  Pd纳米颗粒的TEM像及粒径分布图
图3  Pd胶体的XRD谱
图4  不同浓度Pd胶体活化后的混合电位-时间曲线
图5  化学沉积不同时间后表面形貌SEM像
图6  化学沉积Cu薄膜截面SEM像
图7  Pd胶体的XPS谱
图8  墨绿色Pd胶体中Pd颗粒的TEM和HRTEM像
图9  2种胶团解胶后外壳结构演变示意图
[1] Lee C H, Hwang S, Kim S C, et al.Cu electroless deposition onto Ta substrates[J]. Electrochem. Solid-State Lett., 2006, 9: C157
[2] Lee C H, Lee S C, Kim J J.Bottom-up filling in Cu electroless deposition using bis-(3-sulfopropyl)-disulfide (SPS)[J]. Electrochim. Acta, 2005, 50: 3563
[3] Smy T, Tan L, Dew S K, et al.Simulation of electroless deposition of Cu thin films for very large scale integration metallization[J]. J. Electrochem. Soc., 1997, 144: 2115
[4] Torres J.Advanced copper interconnections for silicon CMOS technologies[J]. Appl. Surf. Sci., 1995, 91: 112
[5] Kim K, Jin S, Kwon O J.Effect of Pd precursor status on sonochemical surface activation in Cu electroless deposition[J]. Appl. Surf. Sci., 2016, 364: 45
[6] Lee C L, Huang Y C, Kuo L C.Catalytic effect of Pd nanoparticles on electroless copper deposition[J]. J. Solid State Electrochem., 2007, 11: 639
[7] Zabetakis D, Dressick W J.Selective electroless metallization of patterned polymeric films for lithography applications[J]. ACS Appl. Mater. Interfaces, 2009, 1: 4
[8] Yang C C, Wan C C, Wang Y Y.Synthesis of Ag/Pd nanoparticles via reactive micelles as templates and its application to electroless copper deposition[J]. J. Colloid Interface Sci., 2004, 279: 433
[9] Zhang Y H, Yan T T, Yu S Q, et al.Electroless copper deposition in the photographic gelatin layer[J]. J. Electrochem. Soc., 1999, 146: 1270
[10] Lo S H Y, Wang Y Y, Wan C C. Long-term stability of Cu/Pd nanoparticles and their feasibility for electroless copper deposition[J]. Electrochim. Acta, 2008, 54: 727
[11] Fujiwara Y, Kobayashi Y, Kita K, et al.Ag nanoparticle catalyst for electroless Cu deposition and promotion of its adsorption onto epoxy substrate[J]. J. Electrochem. Soc., 2008, 155: D377
[12] Hutchings G J.Nanocrystalline gold and gold palladium alloy catalysts for chemical synthesis[J]. Chem. Commun., 2008, 1148
[13] Nicolas-Debarnot D, Pascu M, Vasile C, et al.Influence of the polymer pre-treatment before its electroless metallization[J]. Surf. Coat. Technol., 2006, 200: 4257
[14] Hsu H H, Teng C W, Lin S J, et al.Sn/Pd catalyzation and electroless Cu deposition on TaN diffusion barrier layers[J]. J. Electrochem. Soc., 2002, 149: C143
[15] Okada S, Kamegawa T, Mori K, et al.An electroless deposition technique for the synthesis of highly active and nano-sized Pd particles on silica nanosphere[J]. Catal. Today, 2012, 185: 109
[16] Charbonnier M, Goepfert Y, Romand M, et al.Electroless plating of glass and silicon substrates through surface pretreatments involving plasma-polymerization and grafting processes[J]. J. Adhes., 2004, 80: 1103
[17] Osaka T, Takamatsu H, Nihei K.A Study on activation and acceleration by mixed PdCl2/SnCl2 catalysts for electroless metal deposition[J]. J. Electrochem. Soc., 1980, 127: 1021
[18] O'Sullivan E J M, Horkans J, White J R, et al. Characterization of PdSn catalysts for electroless metal deposition[J]. IBM J. Res. Dev., 1988, 32: 591
[19] Cui X Y, Hutt D A, Scurr D J, et al.The evolution of Pd/Sn catalytic surfaces in electroless copper deposition[J]. J. Electrochem. Soc., 2011, 158: D172
[20] Svendsen L G, Osaka T, Sawai H.Behavior of Pd/Sn and Pd catalysts for electroless plating on different substrates investigated by means of rutherford backscattering spectroscopy[J]. J. Electrochem. Soc., 1983, 130: 2252
[21] Froment M, Queau E, Martin J R, et al.Structural and analytical characteristics of adsorbed Pd-Sn colloids[J]. J. Electrochem. Soc., 1995, 142: 3373
[22] Chen L J, Wan C C, Wang Y Y.Chemical preparation of Pd nanoparticles in room temperature ethylene glycol system and its application to electroless copper deposition[J]. J. Colloid Interface Sci., 2006, 297: 143
[23] Harraz F A, El-Hout S E, Killa H M, et al. Palladium nanoparticles stabilized by polyethylene glycol: Efficient, recyclable catalyst for hydrogenation of styrene and nitrobenzene[J]. J. Catal., 2012, 286: 184
[24] Kondo K, Ishikawa J, Takenaka O, et al.Electroless copper plating in the presence of excess triethanol amine[J]. J. Electrochem. Soc., 1990, 137: 1859
[25] Nicolas-Debarnot D, Pascu M, Vasile C, et al.Influence of the polymer pre-treatment before its electroless metallization[J]. Surf. Coat. Technol., 2006, 200: 4257
[26] Rene E, Van G, Andrzej A.Handbook of X-Ray Spectrometry Version 2, 2002
[27] Shukla S, Seal S, Akesson J, et al.Study of mechanism of electroless copper coating of fly-ash cenosphere particles[J]. Appl. Surf. Sci., 2001, 181: 35
[1] 薛克敏, 盛杰, 严思梁, 田文春, 李萍. 模压变形中国低活化马氏体钢沉淀相对其力学性能的影响[J]. 金属学报, 2021, 57(7): 903-912.
[2] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[3] 强少明,江来珠,李劲,刘天伟,吴艳萍,蒋益明. 双环电化学动电位再活化法评价11Cr铁素体不锈钢晶间腐蚀敏感性*[J]. 金属学报, 2015, 51(11): 1349-1355.
[4] 文怀梁, 董俊华, 柯伟, 陈文娟, 阳靖峰, 陈楠. 模拟高放废物地质处置环境下重碳酸盐浓度对低碳钢活化/钝化腐蚀倾向的影响*[J]. 金属学报, 2014, 50(3): 275-284.
[5] 柳文波,张弛,杨志刚,夏志新,高古辉,翁宇庆. 表面纳米化对低活化钢的组织及其热稳定性的影响[J]. 金属学报, 2013, 49(6): 707-716.
[6] 黄明亮,周少明,陈雷达,张志杰. Ni-P消耗对焊点电迁移失效机理的影响[J]. 金属学报, 2013, 49(1): 81-86.
[7] 周小卫 沈以赴 顾冬冬. 双脉冲电沉积纳米晶Ni-CeO2复合镀层的微观结构及其高温抗氧化性能[J]. 金属学报, 2012, 48(8): 957-964.
[8] 李武会 田保红 马坪 吴尔冬. ScMn2合金贮氢(氘)性能[J]. 金属学报, 2012, 48(7): 822-829.
[9] 朱红艳,马伟民,闻雷,管仁国,马雷,吴南. (Y, Gd)2O3∶Eu3+纳米粒子制备过程中的合成动力学[J]. 金属学报, 2012, 48(6): 671-677.
[10] 夏志新 张弛 杨志刚. 强磁场对低活化钢中析出行为和力学性能的影响[J]. 金属学报, 2011, 47(6): 713-719.
[11] 阳靖峰 董俊华 柯伟 陈楠. 硼酸缓冲溶液中pH值和腐蚀产物对低碳钢活化/钝化敏感性的影响[J]. 金属学报, 2011, 47(2): 152-156.
[12] 阳靖峰 董俊华 柯伟. 重碳酸盐溶液中SO42-和Cl-对低碳钢活化/钝化腐蚀行为的影响[J]. 金属学报, 2011, 47(10): 1321-1326.
[13] 李均明 薛晓楠 蔡辉 蒋百灵. 多孔结构MgO表面化学镀Ni层的制备与表征[J]. 金属学报, 2010, 46(9): 1103-1108.
[14] 王光君 王德志 周 杰 吴壮志 徐兵. Mo粉表面化学镀Cu及其反应机理[J]. 金属学报, 2009, 45(4): 405-409.
[15] 胡侨丹; 罗蓬; 李建国; 严有为 . 电场活化烧结MoSi2-SiC复合材料的温度场有限元模拟[J]. 金属学报, 2008, 44(10): 1253-1259 .