Please wait a minute...
金属学报  2011, Vol. 47 Issue (11): 1355-1361    DOI: 10.3724/SP.J.1037.2011.00326
  综述 本期目录 | 过刊浏览 |
再制造的热喷涂合金涂层的结构完整性与服役寿命预测研究
徐滨士, 王海斗, 朴钟宇, 张显程
装甲兵工程学院装备再制造技术国防科技重点实验室, 北京 100072
INVESTIGATION OF STRUCTURAL INTEGRITY AND LIFE TIME PREDICTION OF THE THERMAL SPRAYED ALLOY COATING FOR REMANUFACTURING
XU Binshi, WANG Haidou, PIAO Zhongyu, ZHANG Xiancheng
National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Bejing 100072
引用本文:

徐滨士 王海斗 朴钟宇 张显程. 再制造的热喷涂合金涂层的结构完整性与服役寿命预测研究[J]. 金属学报, 2011, 47(11): 1355-1361.
, , , . INVESTIGATION OF STRUCTURAL INTEGRITY AND LIFE TIME PREDICTION OF THE THERMAL SPRAYED ALLOY COATING FOR REMANUFACTURING[J]. Acta Metall Sin, 2011, 47(11): 1355-1361.

全文: PDF(3484 KB)  
摘要: 热喷涂技术是再制造工程的支撑技术, 热喷涂涂层是再制造领域中常见的表面涂覆层, 其初始质量和服役寿命为人关注. 本文以等离子喷涂为例, 研究了与工艺相关的涂层完整性和与服役条件相关的涂层寿命和失效机理. 以不同H2流量、功率和送粉量为条件, 研究了工艺参数对涂层孔隙率和微观力学性能的影响. 以接触疲劳过程为手段, 研究了涂层寿命预测方法和寿命衰退机理. 结果表明, 工艺参数可以不同程度地影响涂层的结构完整性, 通过优化设计可以大幅提高涂层质量; 基于大样本空间建立的S--N曲线可以直观预测涂层接触疲劳寿命, 机理分析表明, 点蚀、剥落和分层失效诱因不尽相同, 分别由粗糙接触、近表面缺陷和剪切应力导致.
关键词 再制造热喷涂合金涂层结构完整性寿命预测    
Abstract:Thermal spray technique is one of the key techniques in remanufacture engineering. The thermal sprayed coatings are commonly used in remanufacturing applications, their initial performance and service lifetime are critical to the success of remanufacturing. In the present paper, structural integrity, lifetime and failure mechanism of plasma sprayed coatings were investigated. The influences of hydrogen gas flow, spraying powder and powder feed rate on porosity in coatings and their mechanical properties were described. The rolling contact fatigue (RCF) experiment was conducted to develop a method of life time prediction and to reveal the failure mechanism for plasma sprayed coatings. The results show that the structural integrity of coatings can be obviously influenced by spraying process and an optimal design of spraying process can remarkably promote the coating performance. For this purpose, the S-N curve was established based on the large sample space to be used to easily predict coating lifetime. It is found that corrosive pitting, spalling and hierarchical failure are the main failure modes, those results from asperity contact, subsurface defect propagation and shear stress distribution, respectively.
Key wordsremanufacturing    thermal spray    alloy coating    structural integrity    life prediction
收稿日期: 2011-05-24     
基金资助:

国家重点基础研究发展计划项目2011CB013405和2011CB013403及国家自然科学基金项目50735006和50975285资助

作者简介: 徐滨士, 男, 1931年生, 教授, 中国工程院院士
[1] Xu B S. China Surf Eng, 2010; 23: 1

(徐滨士. 中国表面工程, 2010; 23: 1)

[2] Xu B S. Remanufacturing Engineering and Its Application. Harbin: Harbin Institute of Technology Press, 2005: 1

(徐滨士. 再制造工程基础及其应用. 哈尔滨: 哈尔滨工业大学出版社, 2005: 1)

[3] Xu B S, Zhu S H. Surface Engineering Theory and Technology. 2nd Ed. Beijing: National Defense Industry Press, 2010: 1

(徐滨士, 朱绍华. 表面工程的理论与技术. 第2版. 北京: 国防工业出版社, 2010: 1)

[4] Zhu Z X, Liu Y, Xu B S, Ma S N. Trans China Weld Inst, 2005; 26: 1

(朱子新, 刘燕, 徐滨士, 马世宁. 焊接学报, 2005; 26: 1)

[5] Wu Z J. Thermal Spray Technology and Applications. Beijing: China Machine Press, 2005: 1

(吴子健. 热喷涂技术与应用. 北京: 机械工业出版社, 2005: 1)

[6] Piao Z Y, Xu B S, Wang H D, Pu C H. Tribol Int, 2010; 43: 252

[7] Zhang X C. PhD Thesis, Shanghai Jiao Tong University, 2007

(张显程. 上海交通大学博士学位论文, 2007)

[8] Zhang X C, Xu B S, Xuan F Z, Wang H D, Wu Y X, Tu S D. J Alloys Compd, 2009; 467: 501

[9] Zhang X C, Xu B S, Wu Y X, Xuan F Z, Tu S D. Appl Surf Sci, 2008; 254: 3879

[10] Zhang X C, Xu B S, Tu S D, Xuan F Z, Wang H D, Wu

Y X. Appl Surf Sci, 2008; 254: 6318 [11] Pfender E. Surf Coat Technol, 1987; 34: 1

[12] Bianchi L, Leger A C, Vardelle M, Vardelle A, Fauchais P. Thin Solid Films, 1997; 305: 35

[13] Gawne D T, Liu B, Bao Y, Zhang T. Surf Coat Technol, 2005; 191: 242

[14] Sampath S, Jiang X, Kulkarni A, Matejicek J, Gilmore D L, Neiser R A. Mater Sci Eng, 2003; A348: 54

[15] Gnaeupel–Herold T, Prask H J, Barker J, Biancaniello F S, Jiggetts R D, Materjicek J. Mater Sci Eng, 2006; A421: 77

[16] Chwa S O, Klein D, Toma F L, Bertrand G, Liao H L, Coddet C, Ohmori A. Surf Coat Technol, 2005; 194: 215

[17] Zhang X C, Xu B S, Xuan F Z, Wang H D, Wu Y S, Tu S D. Wear, 2008; 265: 1875

[18] Zhang X C, Xu B S, Xuan F Z, Tu S D, Wang H D, Wu Y X. Appl Surf Sci, 2008; 254: 3734

[19] Zhang X C, Xu B S, Xuan F Z, Tu S D, Wang H D, Wu Y X. Int J Fatigue, 2009; 31: 906

[20] Holmberg K, Matthews A, Ronkainen H. Tribol Int, 1998; 31: 107
[1] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[2] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.
[3] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[4] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[5] 于慧臣,董成利,焦泽辉,孔凡涛,陈玉勇,苏勇君. 一种TiAl合金的高温蠕变和疲劳行为及其寿命预测方法[J]. 金属学报, 2013, 49(11): 1311-1317.
[6] 邹广平 芦颉 曹扬 刘宝君. 钢质蜂窝夹芯板的弯曲疲劳损伤模型[J]. 金属学报, 2011, 47(9): 1181-1187.
[7] 董杰; 陈学东; 范志超; 江慧峰; 陆守香 . 基于微裂纹扩展的疲劳蠕变寿命预测方法[J]. 金属学报, 2008, 44(10): 1167-1170 .
[8] 王爱萍; 常新春; 侯万良; 王建强 . 镍基非晶合金涂层的制备与腐蚀性能[J]. 金属学报, 2006, 42(5): 537-539 .
[9] 嵇; 罡; T.Grosdidier; 高泰瑞; A.Tidu ; 邹建新; 董闯 . 热喷涂FeAl涂层中纳米晶结构的XRD分析[J]. 金属学报, 2005, 41(10): 1013-1019 .
[10] 张安峰; 王豫跃; 邢建东; 李长久 . 两种涂层和两种钢在液(固)两相流中冲刷与腐蚀的交互作用[J]. 金属学报, 2004, 40(4): 411-415 .
[11] 吴萍; 周昌炽; 唐西南 . 激光熔覆镍基合金和Ni/WC涂层的磨损特性[J]. 金属学报, 2002, 38(12): 1257-1260 .
[12] 杨王Yue; 李志文 . θ法预测12Cr1MoV钢主蒸汽管道材料剩余寿命[J]. 金属学报, 1999, 35(7): 721-725 .
[13] 丁传富;于辉;吴学仁. 30CrMnSiNi2A高强钢的疲劳小裂纹扩展特性及寿命预测[J]. 金属学报, 1997, 33(3): 277-286.
[14] 李延祥;文九巴;祝要民;黄金亮. Ni-Fe-Cr-B-Si涂层超塑扩散焊接的强化效应及耐磨性[J]. 金属学报, 1996, 32(5): 538-543.