Please wait a minute...
金属学报  2016, Vol. 52 Issue (8): 923-930    DOI: 10.11900/0412.1961.2015.00581
  论文 本期目录 | 过刊浏览 |
微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*
刘小龙1,孙成奇1,周砚田2,洪友士1()
1 中国科学院力学研究所非线性力学国家重点实验室, 北京100190 。
2 瓦房店轴承股份有限公司热处理分厂, 大连 116300
EFFECTS OF MICROSTRUCTURE AND STRESS RATIO ON HIGH-CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY
Xiaolong LIU1,Chengqi SUN1,Yantian ZHOU2,Youshi HONG1()
1 State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 。
2 Heat Treatment Plant, Wafangdian Bearing Co. Ltd., Dalian 116300, China
全文: PDF(1553 KB)   HTML
摘要: 

采用旋转弯曲和超声疲劳实验分别测试了全等轴和等轴双态组织Ti-6Al-4V合金的高周和超高周疲劳性能, 并用SEM观察了疲劳断口特征. 结果表明: 2种组织Ti-6Al-4V合金的高周和超高周疲劳行为相似, 不同应力比下, 其S-N曲线均表现出单线形或双线形的形式; 存在滑移机制和解理机制2种疲劳破坏机制. 随应力比增加, 2种组织Ti-6Al-4V合金的高周和超高周疲劳破坏机制均从滑移机制向解理机制转变. 基于疲劳寿命和疲劳强度建立模型分析了应力比对2种机制之间竞争行为的影响, 模型预测结果与实验结果趋势吻合.

关键词 Ti-6Al-4V合金超高周疲劳微结构应力比滑移机制解理机制    
Abstract

Titanium alloys have been widely used as superior engineering materials because of their high specific strength, high temperature resistance and high corrosion resistance. In their engineering applications such as used in aircraft engines, titanium alloys may experience even 1010 fatigue cycles. Recently, faceted crack initiation was observed in high-cycle fatigue (HCF) and very-high-cycle fatigue (VHCF) regimes of titanium alloys, which resulted in a sharp decrease in fatigue strength. Therefore, the HCF and VHCF of titanium alloys have both scientific significance and engineering requirement. In this work, the effects of microstructure and stress ratio (R) on HCF and VHCF of a Ti-6Al-4V alloy have been investigated. Fatigue tests were conducted on a rotating-bending fatigue machine and an ultrasonic fatigue machine. All the fatigue fracture surfaces were observed by SEM. The results show that the HCF and VHCF behaviors of the fully-equiaxed and the bimodal Ti-6Al-4V alloy are similar. The observations of fracture surface indicate that two crack initiation mechanisms prevail, i.e. slip mechanism and cleavage mechanism. With the increase of stress ratio, the crack initiation mechanism switches from slip to cleavage. The S-N curves present the single-line type or the bilinear type. For the cases of rotating-bending and ultrasonic axial cycling with R= -1.0, -0.5 and 0.5, the S-N curves are single-line type corresponding to the slip mechanism or cleavage mechanism. For the cases of R= -0.1 and 0.1, the S-N curves are bilinear type corresponding to both slip and cleavage mechanisms. A model based on fatigue life and fatigue limit is proposed to describe the competition between the two mechanisms, which is in agreement with the experimental results.

Key wordsTi-6Al-4V alloy    very-high-cycle fatigue    microstructure    stress ratio    slip mechanism    cleavage mechanism
收稿日期: 2015-11-12      出版日期: 2016-05-04
基金资助:* 国家自然科学基金项目11202210和11572325资助

引用本文:

刘小龙,孙成奇,周砚田,洪友士. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*[J]. 金属学报, 2016, 52(8): 923-930.
Xiaolong LIU,Chengqi SUN,Yantian ZHOU,Youshi HONG. EFFECTS OF MICROSTRUCTURE AND STRESS RATIO ON HIGH-CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY. Acta Metall Sin, 2016, 52(8): 923-930.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00581      或      http://www.ams.org.cn/CN/Y2016/V52/I8/923

图1  疲劳试样形状和尺寸示意图
图2  经退火和固溶时效热处理的2种Ti-6Al-4V合金的SEM像
图3  经退火和固溶时效热处理的2种Ti-6Al-4V合金的EBSD结果
图4  滑移机制的疲劳断口
图5  解理机制的疲劳断口
图6  内部裂纹萌生区域示意图和原子力显微镜表征的形貌
图7  解理面的形貌及EDS分析
图8  Facet和初生α相晶粒尺寸分布
图9  旋转弯曲加载下Ti-6Al-4V合金的S-N曲线
图10  轴向加载下Ti-6Al-4V合金的S-N曲线
图11  不同应力比下lgD*与应力幅的关系
图12  滑移机制和解理机制竞争示意图
[1] Li S X.Int Mater Rev, 2012; 57: 92
[2] Hong Y S, Zhao A G, Qian G A.Acta Metall Sin, 2009; 45: 769
[2] (洪友士, 赵爱国, 钱桂安. 金属学报, 2009; 45: 769)
[3] Liu X L, Sun C Q, Hong Y S.Mater Sci Eng, 2015; A622: 228
[4] Leopold G, Nadot Y, Billaudeau T, Mendez J.Fatigue Fract Eng Mater Struct, 2015; 38: 1026
[5] Ding H S, Shang Z B, Wang Y Z, Chen R R, Guo J J, Fu H Z.Acta Metall Sin, 2015; 51: 569
[5] (丁宏升, 尚子博, 王永喆, 陈瑞润, 郭景杰, 傅恒志. 金属学报, 2015; 51: 569)
[6] Neal F D, Blenkinsop P A.Acta Metall, 1976; 24: 59
[7] Szczepanski C J, Jha S K, Larsen J M, Jones J W.Metall Mater Trans, 2008; 39A: 2841
[8] Chandran K S, Jha S K.Acta Mater, 2005; 53: 1867
[9] Chandran K S, Chang P, Cashman G T.Int J Fatigue, 2010; 32: 482
[10] Oguma H, Nakamura T.Int J Fatigue, 2013; 50: 89
[11] Oguma H, Nakamura T.Scr Mater, 2010; 63: 32
[12] Chandran K S.Nat Mater, 2005; 4: 303
[13] Shanyavskiy A A.Sci China-Phys Mech Astron, 2014; 57: 19
[14] Lei Z Q, Xie J J, Sun C Q, Hong Y S.Sci China-Phys Mech Astron, 2014; 57: 74
[15] Matsunaga H, Sun C, Hong Y, Murakami Y.Fatigue Fract Eng Mater Struct, 2015; 38: 1274
[16] Goodman J.Mechanics Applied Engineering. London: Longman, Green and Co Ltd, 1899: 30
[17] Gerber W. Z Bayer Archit Ing Ver, 1874; 6: 101
[18] Zuo J H, Wang Z G, Han E-H.Mater Sci Eng, 2008; A473: 147
[19] Takeuchi E, Furuya Y, Nagashima N, Matsuoka S.Tetsu Hagané, 2010; 96: 36
[19] (竹内悦男, 古谷佳之, 長島伸夫, 松岡三郎.鉄と鋼, 2010; 96: 36)
[20] Takeuchi E, Furuya Y, Nagashima N, Matsuoka S.Fatigue Fract Eng Mater Struct, 2008; 31: 599
[21] Morrissey R, Nicholas T.Int J Fatigue, 2006; 28: 1577
[22] Basquin O H.Proc Astm, 1910; 10: 625
[23] Sun C, Lei Z, Hong Y.Mech Mater, 2014; 69: 227
[24] Qian G A, Zhou C E, Hong Y S.Acta Mater, 2011; 59: 1321
[25] Hong Y S, Zhao A G, Qian G A, Zhou C E.Metall Mater Trans, 2012; 43A: 2753
[1] 丁健翔,田无边,汪丹丹,张培根,陈坚,孙正明. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理[J]. 金属学报, 2019, 55(5): 627-637.
[2] 杨祖坤, 张昌盛, 庞蓓蓓, 洪艳艳, 莫方杰, 刘昭, 孙光爱. 初始微结构对多晶金属Be宏观力学性能的影响[J]. 金属学报, 2018, 54(8): 1150-1156.
[3] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[4] 高英俊, 卢昱江, 孔令一, 邓芊芊, 黄礼琳, 罗志荣. 晶体相场模型及其在材料微结构演化中的应用[J]. 金属学报, 2018, 54(2): 278-292.
[5] 刘汉青, 何超, 黄志勇, 王清远. TC17合金超高周疲劳裂纹萌生机理[J]. 金属学报, 2017, 53(9): 1047-1054.
[6] 张金虎,徐东生,王云志,杨锐. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响*[J]. 金属学报, 2016, 52(8): 905-915.
[7] 赵时璐,张震,张钧,王建明,张正贵. 多弧离子镀TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的微观结构与耐磨损性能*[J]. 金属学报, 2016, 52(6): 747-754.
[8] 朱莉娜,邓彩艳,王东坡,胡绳荪. 表面粗糙度对Ti-6Al-4V合金超高周疲劳性能的影响*[J]. 金属学报, 2016, 52(5): 583-591.
[9] 韩世伟, 石多奇, 杨晓光, 苗国磊. 微结构相关的高循环疲劳分散性计算方法研究*[J]. 金属学报, 2016, 52(3): 289-297.
[10] 陈思,秦飞,安彤,王瑞铭,赵静毅. 退火工艺对硅通孔填充Cu微结构演化与胀出行为的影响*[J]. 金属学报, 2016, 52(2): 202-208.
[11] 丁杰, 张志明, 王俭秋, 韩恩厚, 唐伟宝, 张茂龙, 孙志远. 三代核电接管安全端异种金属焊接接头的显微表征[J]. 金属学报, 2015, 51(4): 425-439.
[12] 郭强, 郭杏林, 樊俊铃, 吴承伟. 基于固有耗散的FV520B钢高周疲劳性能研究[J]. 金属学报, 2015, 51(4): 400-406.
[13] 单海权, 张跃飞, 毛圣成, 张泽. 电沉积纳米孪晶Ni中五次孪晶的电子显微分析*[J]. 金属学报, 2014, 50(3): 305-312.
[14] 喻利花, 董鸿志, 许俊华. C含量对TiWCN复合膜微结构、力学性能和摩擦磨损性能的影响[J]. 金属学报, 2014, 50(11): 1350-1356.
[15] 罗新民,陈康敏,张静文,鲁金忠,任旭东,罗开玉,张永康. Al和铝合金激光冲击表面改性的位错机制[J]. 金属学报, 2013, 49(6): 667-674.