Corresponding authors:SONG Yuzhu, associate professor, Tel:(010)62332265, E-mail:yuzhusong@ustb.edu.cn;CHEN Jun, professor, Tel:(010)62332265, E-mail:junchen@ustb.edu.cn
Received:2024-07-31Revised:2024-12-07
Fund supported:
National Key Research and Development Program of China(2022YFE0109100) National Natural Science Foundation of China(22275014) National Natural Science Foundation of China(12104038) Beijing Outstanding Young Scientist Program(JWZQ20240101015)
With the advancement of technology, the exploration of space, oceans, and underground resources continues to deepen. An ever-increasing demand for devices that operate under extreme conditions propels the need for the precise control of the thermal expansion properties of the materials used. Zero thermal expansion metals exhibit constant dimensions despite temperature variations, a unique feature that imparts these metals a significant application value in high-precision and high-stability devices. This article summarizes the research progress on zero thermal expansion metals since the discovery of Invar alloy over a century ago. It provides an overview of the definition, classification, and historical development of zero thermal expansion metals. Furthermore, this article introduces several main mechanisms inducing zero thermal expansion in metals and highlights several categories of metals with excellent zero thermal expansion properties and high application value. Moreover, it discusses the crystal structures, zero thermal expansion properties, and methods for controlling the thermal expansion properties of different types of metals. The coupling relationship between the magnetism, phase transitions, and thermal expansion properties is explored. Finally, the article provides a perspective on future trends in the development of zero thermal expansion metals.
SONG Yuzhu, ZHANG Jimin, ZHOU Chang, SHI Naike, CHEN Jun. Research Progress on Zero Thermal Expansion Metallic Materials[J]. Acta Metallurgica Sinica, 2025, 61(6): 809-825 DOI:10.11900/0412.1961.2024.00264
Fig.1
Zero thermal expansion (ZTE) of metallic materials, originates from the mutual cancellation between the positive contribution to volume (ΔV2) from lattice vibrations and the negative contributions to volume (ΔV1) from magnetovolume efect, martensitic phase transitions, or valence state changes (TC—Curie temperature)
Fig.2
Volume (showed by numbers) decreases of the Invar alloy as the ferromagnetic ordered magnetic structure transitions to a disordered paramagnetic structure[9]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material
Fig.4
Calculated spin configurations at Fe (orange) and Ni (blue) atoms in fully ordered ferromagnetic states (0 K), ambient states, and paramagnetic states (The size of the arrow is proportional to the calculated magnetic moment)[48] (a), the relationship between the magnetization of Invar alloy and the pressure (P)[48] (b), comparison of linear expansion of Invar alloy, Fe, Cu and Al (Δl / l0—relative length variation) (c), change of phonon entropy and magnetic entropy of Invar alloy with pressure (Sph—phonon entropy; ΔSmag—magnetic entropy change)[48] (d), and change of the sum of phonon entropy and magnetic entropy (ΔSph—phonon entropy change)[48] (e)
图5
AFe2 (A = Zr、Nb、Hf、Ta、Sc和Ti)体系零热膨胀性能[18,19,21,22,24,26]
Fig.5
Zero thermal expansion properties of AFe2 (A = Zr, Nb, Hf, Ta, Sc, and Ti) systems[18,19,21,22,24,26]
(a) comparison of macroscopic linear expansion of Zr0.8Nb0.2Fe2, Fe0.64Ni0.36, and Fe[18]
(b) temperature dependence of cell parameters for neutron diffraction and synchrotron radiation analysis of (Zr0.65Nb0.35)0.95Fe0.05Fe2 (ZNFF)[19] (SXRD—synchrotron X-ray diffraction, NPD—neutron powder diffraction, a—cell parameter, αa —thermal expansion coefficient of crystal in a-axis direction)
(c) variation of cell parameters of Zr0.7Ta0.3Fe2 with temperature (Δa—change of a,ZTE—zero thermal expansion, FM—ferromagnetic, AFM—antiferromagnetic)[21]
(d) relative cell volume of (Sc, Ti)Fe2 varies with temperature when x = 0 (PTE—positive thermal expansion), x = 0.45 (ZTE), and x = 0.6 (NTE—negative thermal expansion)[22] (ΔV / V—relative cell volume variation; CMVE—traditional magnetic volume effect; UMVE—unconventional magnetic volume effect)
(e) temperature dependence of unit cell volumes for HfFe2 + δ (δ = 0.3, 0.5, and 0.6)[24] (LTE—low thermal expansion)
(f) dilatometer thermal expansion of TiFe2 and Hf0.6Ti0.4Fe2 + x (x = 0, 0.5, and 1.3)[26]
ScFe2和TiFe2均为MgZn2型六方相体积正热膨胀材料,因其原子半径差异较小并且结构相符,因此可以在Sc1 - x Ti x Fe2 (x = 0.0~1.0)全区间内进行替代得到单一六方相。其中ScFe2为铁磁结构,TiFe2为反铁磁结构,由此随着替代比例不同Sc1 - x Ti x Fe2展现出丰富的磁结构转变[52]。作者研究团队[22]通过调整替代的Ti含量,发现(Sc1 - x, Ti x)Fe2的热膨胀发生了由正到负的转变,其中Sc0.4Ti0.6Fe2的体积膨胀系数αv = -28.36 × 10-6 K-1 (125~205 K),特别在x = 0.45时,调控出了宽温区的体积零热膨胀(αv = -1.24 × 10-6 K-1,10~250 K)。经过磁性测试以及中子衍射分析发现,Sc1 - x Ti x Fe2的异常热膨胀是由铁磁1到铁磁2 (FM1-FM2)转变造成的,这个过程中占据Wyckoff位6h (x', 2x', 1/4)的Fe原子(用Fe(6h)表示,以下类似)的自旋磁矩减小但磁矩方向未发生改变,且晶胞参数a (b)的减小与Fe(6h)-Fe(6h)的间距存在对应关系,并用热膨胀的实验值(ωexp)减去声子对热膨胀的影响(ωnm)表示了铁磁矩减小对热膨胀的贡献,如图5d[22]所示。也有学者[23]通过Nb替代Sc位,在Sc0.725Nb0.275Fe2中实现了体积零热膨胀(αv = -0.69 × 10-6 K-1,108~264 K)。
Fig.7
Thermal expansion properties and macroscopic magnetic properties of La(Fe, M)13 (M = Si, Al) type metal materials[31,32]
(a, b) thermal expansions of LaFe13 - x Si x (x = 1.5, 2.0, 2.4) (a) and LaFe13 - x Si x hydrides (x = 1.5, 2.0, 2.4) (b)[31] (Δa / a300 K—rate of change of cell parameter relative to 300 K, ΔT—temperature difference)
(c, d) macroscopic magnetisms of LaFe13 - x Si x (c) and LaFe13 - x Si x hydrides (d)[31] (Inset in Fig.7d shows the TC curves for original and hydrogenated LaFe13 - x Si x sample)
(e) thermal expansion of LaFe13 - x Al x (x = 2.5, 2.7)[32] (SS304—304 stainless steel, ΔL / L(300 K)—linear thermal expansion reative to 300 K)
(f) macroscopic magnetism of LaFe13 - x Al x (x = 1.8, 1.9, 2.1, 2.3, 2.5, 2.7)[32] (PM—paramagnetic)
(b) stability of zero expansion of Ho2Fe16Co (ΔT1—100-208 K, ΔT2—208-377 K, ΔT3—377-416 K) (c, d) magnetic ordered densities of state (DOS) of Ho2Fe17 (c) and Ho2Fe15Co2 (d) (E—electronic energy level, FIM—ferrimagnetic, DLM—disordered local moment) (e) changes of Fe magnetic moment and cell volume (V) of Ho2Fe16Co at 6g (MFe/Co—magnetic moment of Fe/Co atoms, T—temperature, μB—Bohr magnetron) (f) contribution of the magnetic moment (MFe) and magnetic order of the Fe sublattice to the cell volume (VM) (VM(T)—contribution of magnetic ordering to the unit cell volume, |Σ MFe|—magnetic moment of Fe sublattice. Inset in Fig.8f shows the |Σ MFe| as a function of Co content)
2.6 R2Fe14B型金属材料
R2Fe14B作为永磁材料已被广泛应用。其自发磁致伸缩性能早在1987年就被报道,之后发现其负热膨胀特性与磁性相关[69~71]。Er2Fe14B具有复杂的磁结构,在低温时为亚铁磁结构,Er、Fe的磁矩随着温度变化存在自旋重取向,其中Er的磁矩倾向为面内各向异性,而Fe为轴向各向异性,在5 K时Fe磁矩与Er磁矩反向排列且与c轴成80°夹角,随温度升高磁矩向c轴旋转,在达到自旋重取向温度(TSR)时沿着c轴排列。Co的取代使R2Fe14B的晶胞参数减小,增加了相邻原子的磁交换积分和自旋耦合能力,导致TC升高并且磁矩随温度变化趋于平缓。作者研究团队[36]通过Co的掺杂调控磁性,来获得相应的热膨胀性能,磁贡献与磁矩变化速率相关联,其中Er2(Fe1 - x Co x)14B在x = 0.05时展现出优异的零热膨胀性能(αv = 1.5 × 10-6 K-1,120~475 K)。
Fig.9
Anisotropic thermal expansion and cyclic properties of titanium-based shape memory alloys[40-42]
(a) evolution of macroscopic strain with temperature of rolled 60% (thickness reduction rate) Ti50.6Ni49.4 alloy sheet along RD, 22.5°, 33.5°, 45°, 67.5°, and TD after annealing for 60 min at 523 K[40] (RD—rolling direction, TD—transverse direction)
(b) Ni50.8Ti49.2 alloy through three steps rolling (CroR-15%-10%-5%: the thickness of the first rolling direction is reduced by 15%-the thickness in the vertical direction from the first rolling direction is reduced by 10%-thickness is reduced by 5% along the first rolling direction) to a thickness of 30% of the total thickness after the internal macroscopic thermal expansion change[41] (CroR—cross rolling, TE—thermal expansion)
(c) Ti22Nb CR (cold-rolled) plate along the rolling direction in eight cycles (cycle 01 Tmax (maximum temperature) = 350 oC, thermomechanical analyzer measurements were performed in cycle 02-08 at Tmax = 300 oC)[42] (Inset shows the transmission Kikuchi diffraction (TKD) band contrast (BC) + inverse pole figure (IPF) map inside a primary martensite lath in the sample heating to 350 oC)
Fig.11
Thermal expansion control of different biphase alloy systems[14-16,45,94]
(a) zero thermal expansion dual-phase alloy obtained by synergistic combination of negative thermal expansion L phase (La(Fe, Co, Si)13) and positive thermal expansion α phase (α-(Fe, Co, Si)) (αCalc.—calculated S-3 ZTE (empty circle point line) is derived from L-phase and α phase thermal expansions)[14]
(b) thermal expansion behavior of LaFe0.939x Co0.061x Si0.0583x (x = 37.5, 47.5, 57.5, and 67.5, designated as S-1, S-2, S-3, and S-4, respectively)[14]
(c) macroscopic linear expansion of samples labeled S-3 (x = 0.03) to S-9 (x = 0.09) in Ho x Fe1 - x with x = 0.03, 0.04, 0.05, 0.07, and 0.09[15]
(d) linear thermal expansion curves of samples in (LaFe10.8CoSi1.2)100 - y -Cu y alloys where y = 0, 15, 25, 35, and 45[94]
(e) thermal expansion of Er2Fe14 + x B1 + 0.07x alloy compared to pure iron[16]
(f) cyclic thermal expansion properties of Fe2.85Mn0.15PtB0.25[45]
近期,以La(Fe, Si)13为基体,通过双相来补偿其负热膨胀得到力学性能优异的零热膨胀材料也取得了一系列进展。Liu等[44]通过Cu掺杂得到LaFe10.6 - x Cu x Si2.4材料,X射线衍射分析发现,Cu的掺杂可以原位析出1∶13相、1∶1∶1相和α-Fe相,其中1∶13相作为负热膨胀相,1∶1∶1和α-Fe相作为正热膨胀相可以补偿其负热膨胀,达到调节材料整体热膨胀性能的目的。最终在LaFe10.1Cu0.5Si2.4中实现了优异的零热膨胀(αl = 2.8 × 10-7 K-1,185~250 K)。另一项研究以(LaFe10.8CoSi1.2)100 - y-Cu y 进行双相设计,不仅在Cu45成分中实现了接近零的负热膨胀,并且LaCu2第二相与La(Fe, Co, Si)13相为半共格结构,可能导致了两相的协同变形,如图11d[94]所示。实验表明,引入的第二相强化可以使材料的力学性能以及疲劳寿命大幅提升。
Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.
A zero thermal expansion material in a pure form of NaZn13-type La(Fe,Si)13 was fabricated. Through optimizing the chemical composition, an isotropic zero thermal expansion material is achieved. The obtained materials exhibit a low expansion of |α| < 1.0 × 10(-6) K(-1) (α is the coefficient of linear thermal expansion) over a broad temperature range (15-150 K). The present study indicates that the thermal expansion behavior of the NaZn13-type La(Fe,Si)13 compounds depends mainly on the content of Si element. This new material is desirable in many fields of industry as a reliable and low-cost zero thermal expansion material.
CaoY L, LinK, KhmelevskyiS, et al.
Ultrawide temperature range super-Invar behavior of R2(Fe,Co)17 materials (R = rare earth)
The magnetostructural coupling between the structural and the magnetic transition has a crucial role in magnetoresponsive effects in a martensitic-transition system. A combination of various magnetoresponsive effects based on this coupling may facilitate the multifunctional applications of a host material. Here we demonstrate the feasibility of obtaining a stable magnetostructural coupling over a broad temperature window from 350 to 70 K, in combination with tunable magnetoresponsive effects, in MnNiGe:Fe alloys. The alloy exhibits a magnetic-field-induced martensitic transition from paramagnetic austenite to ferromagnetic martensite. The results indicate that stable magnetostructural coupling is accessible in hexagonal phase-transition systems to attain the magnetoresponsive effects with broad tunability.
CaronL, TrungN T, BrückE, et al.
Pressure-tuned magnetocaloric effect in Mn0.93Cr0.07CoGe
[J]. Phys. Rev., 2011, 84B: 020414
WuR R, BaoL F, HuF X, et al.
Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature
We describe a group of alloys that exhibit "super" properties, such as ultralow elastic modulus, ultrahigh strength, super elasticity, and super plasticity, at room temperature and that show Elinvar and Invar behavior. These "super" properties are attributable to a dislocation-free plastic deformation mechanism. In cold-worked alloys, this mechanism forms elastic strain fields of hierarchical structure that range in size from the nanometer scale to several tens of micrometers. The resultant elastic strain energy leads to a number of enhanced material properties.
KimH Y, WeiL S, KobayashiS, et al.
Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti-23Nb-2Zr-0.7Ta-1.2O alloy
High-entropy alloys are solid solutions of multiple principal elements that are capable of reaching composition and property regimes inaccessible for dilute materials. Discovering those with valuable properties, however, too often relies on serendipity, because thermodynamic alloy design rules alone often fail in high-dimensional composition spaces. We propose an active learning strategy to accelerate the design of high-entropy Invar alloys in a practically infinite compositional space based on very sparse data. Our approach works as a closed-loop, integrating machine learning with density-functional theory, thermodynamic calculations, and experiments. After processing and characterizing 17 new alloys out of millions of possible compositions, we identified two high-entropy Invar alloys with extremely low thermal expansion coefficients around 2 × 10 per degree kelvin at 300 kelvin. We believe this to be a suitable pathway for the fast and automated discovery of high-entropy alloys with optimal thermal, magnetic, and electrical properties.
The antagonism between strength and resistance to hydrogen embrittlement in metallic materials is an intrinsic obstacle to the design of lightweight yet reliable structural components operated in hydrogen-containing environments. Economical and scalable microstructural solutions to this challenge must be found. Here, we introduce a counterintuitive strategy to exploit the typically undesired chemical heterogeneity within the material's microstructure that enables local enhancement of crack resistance and local hydrogen trapping. We use this approach in a manganese-containing high-strength steel and produce a high dispersion of manganese-rich zones within the microstructure. These solute-rich buffer regions allow for local micro-tuning of the phase stability, arresting hydrogen-induced microcracks and thus interrupting the percolation of hydrogen-assisted damage. This results in a superior hydrogen embrittlement resistance (better by a factor of two) without sacrificing the material's strength and ductility. The strategy of exploiting chemical heterogeneities, rather than avoiding them, broadens the horizon for microstructure engineering via advanced thermomechanical processing.
DingR, YaoY J, SunB H, et al.
Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels
... [9]Volume (showed by numbers) decreases of the Invar alloy as the ferromagnetic ordered magnetic structure transitions to a disordered paramagnetic structure[9]Fig.21.2 马氏体相变
... Thermal expansion data of zero thermal expansion metallic materials[14-46] ...
... [14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... [14~16,45,94]Thermal expansion control of different biphase alloy systems[14-16,45,94]
(a) zero thermal expansion dual-phase alloy obtained by synergistic combination of negative thermal expansion L phase (La(Fe, Co, Si)13) and positive thermal expansion α phase (α-(Fe, Co, Si)) (αCalc.—calculated S-3 ZTE (empty circle point line) is derived from L-phase and α phase thermal expansions)[14] ...
... [14-16,45,94]
(a) zero thermal expansion dual-phase alloy obtained by synergistic combination of negative thermal expansion L phase (La(Fe, Co, Si)13) and positive thermal expansion α phase (α-(Fe, Co, Si)) (αCalc.—calculated S-3 ZTE (empty circle point line) is derived from L-phase and α phase thermal expansions)[14] ...
... (a) zero thermal expansion dual-phase alloy obtained by synergistic combination of negative thermal expansion L phase (La(Fe, Co, Si)13) and positive thermal expansion α phase (α-(Fe, Co, Si)) (αCalc.—calculated S-3 ZTE (empty circle point line) is derived from L-phase and α phase thermal expansions)[14] ...
... (b) thermal expansion behavior of LaFe0.939x Co0.061x Si0.0583x (x = 37.5, 47.5, 57.5, and 67.5, designated as S-1, S-2, S-3, and S-4, respectively)[14] ...
Plastic and low-cost axial zero thermal expansion alloy by a natural dual-phase composite
4
2021
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... (c) macroscopic linear expansion of samples labeled S-3 (x = 0.03) to S-9 (x = 0.09) in Ho x Fe1 - x with x = 0.03, 0.04, 0.05, 0.07, and 0.09[15] ...
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
Thermal expansion control of different biphase alloy systems[14-16,45,94]
(a) zero thermal expansion dual-phase alloy obtained by synergistic combination of negative thermal expansion L phase (La(Fe, Co, Si)13) and positive thermal expansion α phase (α-(Fe, Co, Si)) (αCalc.—calculated S-3 ZTE (empty circle point line) is derived from L-phase and α phase thermal expansions)[14] ...
... -16,45,94]
(a) zero thermal expansion dual-phase alloy obtained by synergistic combination of negative thermal expansion L phase (La(Fe, Co, Si)13) and positive thermal expansion α phase (α-(Fe, Co, Si)) (αCalc.—calculated S-3 ZTE (empty circle point line) is derived from L-phase and α phase thermal expansions)[14] ...
... (e) thermal expansion of Er2Fe14 + x B1 + 0.07x alloy compared to pure iron[16] ...
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
Transforming thermal expansion from positive to negative: The case of cubic magnetic compounds of (Zr, Nb)Fe2
8
2020
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
Interplanar ferromagnetism enhanced ultrawide zero thermal expansion in kagome cubic intermetallic (Zr, Nb)Fe2
6
2023
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... ,19,21,22,24,26]Zero thermal expansion properties of AFe2 (A = Zr, Nb, Hf, Ta, Sc, and Ti) systems[18,19,21,22,24,26]
(a) comparison of macroscopic linear expansion of Zr0.8Nb0.2Fe2, Fe0.64Ni0.36, and Fe[18] ...
... ,19,21,22,24,26]
(a) comparison of macroscopic linear expansion of Zr0.8Nb0.2Fe2, Fe0.64Ni0.36, and Fe[18] ...
... (b) temperature dependence of cell parameters for neutron diffraction and synchrotron radiation analysis of (Zr0.65Nb0.35)0.95Fe0.05Fe2 (ZNFF)[19] (SXRD—synchrotron X-ray diffraction, NPD—neutron powder diffraction, a—cell parameter, αa —thermal expansion coefficient of crystal in a-axis direction) ...
A seawater‐corrosion‐resistant and isotropic zero thermal expansion (Zr, Ta)(Fe, Co)2 alloy
2
2022
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
Interplanar magnetic orders and symmetry-tuned zero thermal expansion in kagome? metal (Zr,Ta)Fe2
6
2023
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... ,21,22,24,26]Zero thermal expansion properties of AFe2 (A = Zr, Nb, Hf, Ta, Sc, and Ti) systems[18,19,21,22,24,26]
(a) comparison of macroscopic linear expansion of Zr0.8Nb0.2Fe2, Fe0.64Ni0.36, and Fe[18] ...
... ,21,22,24,26]
(a) comparison of macroscopic linear expansion of Zr0.8Nb0.2Fe2, Fe0.64Ni0.36, and Fe[18] ...
... (c) variation of cell parameters of Zr0.7Ta0.3Fe2 with temperature (Δa—change of a,ZTE—zero thermal expansion, FM—ferromagnetic, AFM—antiferromagnetic)[21] ...
Negative thermal expansion in (Sc,Ti)Fe2 induced by an unconventional magnetovolume effect
7
2020
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
AFe2 (A = Zr、Nb、Hf、Ta、Sc和Ti)体系零热膨胀性能[18,19,21,22,24,26]
Zero thermal expansion properties of AFe2 (A = Zr, Nb, Hf, Ta, Sc, and Ti) systems[18,19,21,22,24,26]
(a) comparison of macroscopic linear expansion of Zr0.8Nb0.2Fe2, Fe0.64Ni0.36, and Fe[18] ...
... ,22,24,26]
(a) comparison of macroscopic linear expansion of Zr0.8Nb0.2Fe2, Fe0.64Ni0.36, and Fe[18] ...
... (d) relative cell volume of (Sc, Ti)Fe2 varies with temperature when x = 0 (PTE—positive thermal expansion), x = 0.45 (ZTE), and x = 0.6 (NTE—negative thermal expansion)[22] (ΔV / V—relative cell volume variation; CMVE—traditional magnetic volume effect; UMVE—unconventional magnetic volume effect) ...
... ScFe2和TiFe2均为MgZn2型六方相体积正热膨胀材料,因其原子半径差异较小并且结构相符,因此可以在Sc1 - x Ti x Fe2 (x = 0.0~1.0)全区间内进行替代得到单一六方相.其中ScFe2为铁磁结构,TiFe2为反铁磁结构,由此随着替代比例不同Sc1 - x Ti x Fe2展现出丰富的磁结构转变[52].作者研究团队[22]通过调整替代的Ti含量,发现(Sc1 - x, Ti x)Fe2的热膨胀发生了由正到负的转变,其中Sc0.4Ti0.6Fe2的体积膨胀系数αv = -28.36 × 10-6 K-1 (125~205 K),特别在x = 0.45时,调控出了宽温区的体积零热膨胀(αv = -1.24 × 10-6 K-1,10~250 K).经过磁性测试以及中子衍射分析发现,Sc1 - x Ti x Fe2的异常热膨胀是由铁磁1到铁磁2 (FM1-FM2)转变造成的,这个过程中占据Wyckoff位6h (x', 2x', 1/4)的Fe原子(用Fe(6h)表示,以下类似)的自旋磁矩减小但磁矩方向未发生改变,且晶胞参数a (b)的减小与Fe(6h)-Fe(6h)的间距存在对应关系,并用热膨胀的实验值(ωexp)减去声子对热膨胀的影响(ωnm)表示了铁磁矩减小对热膨胀的贡献,如图5d[22]所示.也有学者[23]通过Nb替代Sc位,在Sc0.725Nb0.275Fe2中实现了体积零热膨胀(αv = -0.69 × 10-6 K-1,108~264 K). ...
Structural and magnetic properties of Sc1 - x Nb x Fe2 intermetallics showing anomalous zero thermal expansion
2
2021
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... ScFe2和TiFe2均为MgZn2型六方相体积正热膨胀材料,因其原子半径差异较小并且结构相符,因此可以在Sc1 - x Ti x Fe2 (x = 0.0~1.0)全区间内进行替代得到单一六方相.其中ScFe2为铁磁结构,TiFe2为反铁磁结构,由此随着替代比例不同Sc1 - x Ti x Fe2展现出丰富的磁结构转变[52].作者研究团队[22]通过调整替代的Ti含量,发现(Sc1 - x, Ti x)Fe2的热膨胀发生了由正到负的转变,其中Sc0.4Ti0.6Fe2的体积膨胀系数αv = -28.36 × 10-6 K-1 (125~205 K),特别在x = 0.45时,调控出了宽温区的体积零热膨胀(αv = -1.24 × 10-6 K-1,10~250 K).经过磁性测试以及中子衍射分析发现,Sc1 - x Ti x Fe2的异常热膨胀是由铁磁1到铁磁2 (FM1-FM2)转变造成的,这个过程中占据Wyckoff位6h (x', 2x', 1/4)的Fe原子(用Fe(6h)表示,以下类似)的自旋磁矩减小但磁矩方向未发生改变,且晶胞参数a (b)的减小与Fe(6h)-Fe(6h)的间距存在对应关系,并用热膨胀的实验值(ωexp)减去声子对热膨胀的影响(ωnm)表示了铁磁矩减小对热膨胀的贡献,如图5d[22]所示.也有学者[23]通过Nb替代Sc位,在Sc0.725Nb0.275Fe2中实现了体积零热膨胀(αv = -0.69 × 10-6 K-1,108~264 K). ...
High-temperature zero thermal expansion in HfFe2 + δ from added ferromagnetic paths
6
2022
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
Zero thermal expansion in non-stoichiometric and single-phase (Hf, Nb) Fe2.5 alloy
2
2023
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
Chemical heterogeneity modulated zero thermal expansion alloy over super-wide temperature range
6
2023
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
Significant zero thermal expansion via enhanced magnetoelastic coupling in kagome magnets
2
2023
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
Zero thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds
8
2018
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... [28,29]Magnetic structure, crystal structure, and thermal expansion regulation of RCo2 (R = Tb, Gd, and Dy) systems[28,29]
(a) crystal and magnetic structures of Tb(Co1.9Fe0.1) intermetallic compound at 10 K[28] ...
... [28,29]
(a) crystal and magnetic structures of Tb(Co1.9Fe0.1) intermetallic compound at 10 K[28] ...
... (a) crystal and magnetic structures of Tb(Co1.9Fe0.1) intermetallic compound at 10 K[28] ...
... (b) Tb(Co1 - x Fe x)2 macroscopic linear expansion curves[28] ...
... (c) comparison of intrinsic volume expansion and macroscopic linear expansion[28] ...
Adjustable magnetic phase transition inducing unusual zero thermal expansion in cubic RCo2-based intermetallic compounds (R = rare earth)
8
2019
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... 通常磁性金属基负热膨胀体系的异常热膨胀被限制在磁转变温度以下,并且温区较窄[29,79].为使温区进一步拓宽,大多采用过渡、稀土磁性原子去替代基体的磁性原子,从而改变磁交互作用以及总磁矩来进行调控.Li等[38]用非磁性原子Mo取代Fe、V位,研究了V、Mo对ErFe10V2 - x Mo x 磁结构的影响,并在ErFe10V1.4Mo0.6中实现了宽温区零热膨胀(αv = 4.81 × 10-6 K-1,120~440 K).通过对其晶体结构进行中子衍射测试解析发现,当x < 0.6时,Mo只占V8i位,而当x > 0.6时,Mo会进一步占据Fe8j和Fe8f位.随着Mo替代量的增加线膨胀持续降低,在x = 0.4和0.6时达到最小值.变温中子衍射和X射线吸收近边结构光谱分析发现,Fe与Mo存在价电子转移,在x ≤ 0.6时,铁磁矩会相应减小,表明Mo的替代减弱了Fe3d原子的局域磁矩和磁交互作用,并降低磁转变温度.因此,自发体积磁致伸缩被限制在较窄温区,从而减小了热膨胀系数. ...
Realization of ultra-low thermal expansion over a broad temperature interval in Gd x (Dy0.5Ho0.5)1 - x -Co2 compounds
2
2020
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
Zero thermal expansion achieved by an electrolytic hydriding method in La(Fe,Si)13 compounds
9
2017
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... NaZn13型La(Fe, M)13 (M = Si和Al)基化合物因其各向同性和显著的负热膨胀、磁热效应、较高的导电/导热性能和优异的力学性能而被认为是有前景的负热膨胀材料之一[44,62~65].研究[31]发现,La(Fe, Si)13中La原子间隙容易被H、C和B等小原子占据,这会导致Curie温度向室温移动,并且使铁磁相在更高温度下存在,这为实现具有宽工作温度窗口的零热膨胀提供了机会.间隙原子改变了Fe—Fe距离,进而影响磁性能及其耦合的热膨胀.Li等[31]通过电解氢化法制备了La(Fe, Si)13氢化物,其中LaFe11.0Si2.0H y 在20~275 K范围内αl是0.5 × 10-6 K-1,比氢化前更接近零热膨胀,并且工作温区从15~175 K拓宽到20~275 K,如图7a~d[31]所示,相较于其他类别的零热膨胀材料是很少见的,在许多科学和技术领域都具有巨大应用潜力.Al的替代会有效降低La(Fe, M)13的宏观磁转变温度,影响磁性原子耦合作用,从而对热膨胀产生直接影响.对于x = 2.5的La(Fe13 - x Al x)样品,其在5~250 K范围内的平均αl为-0.78 × 10-6 K-1,如图7c和f[32]所示.因此,该类材料可以应用于对温度敏感的设备和器件中.除此之外,Wang等[33]通过调节La(Fe13 - x Si x)中Si的含量来调控热膨胀,在x = 2.4时,得到了低温零热膨胀材料(αl = -0.8 × 10-6 K-1,15~150 K). ...
... [31]通过电解氢化法制备了La(Fe, Si)13氢化物,其中LaFe11.0Si2.0H y 在20~275 K范围内αl是0.5 × 10-6 K-1,比氢化前更接近零热膨胀,并且工作温区从15~175 K拓宽到20~275 K,如图7a~d[31]所示,相较于其他类别的零热膨胀材料是很少见的,在许多科学和技术领域都具有巨大应用潜力.Al的替代会有效降低La(Fe, M)13的宏观磁转变温度,影响磁性原子耦合作用,从而对热膨胀产生直接影响.对于x = 2.5的La(Fe13 - x Al x)样品,其在5~250 K范围内的平均αl为-0.78 × 10-6 K-1,如图7c和f[32]所示.因此,该类材料可以应用于对温度敏感的设备和器件中.除此之外,Wang等[33]通过调节La(Fe13 - x Si x)中Si的含量来调控热膨胀,在x = 2.4时,得到了低温零热膨胀材料(αl = -0.8 × 10-6 K-1,15~150 K). ...
... [31]所示,相较于其他类别的零热膨胀材料是很少见的,在许多科学和技术领域都具有巨大应用潜力.Al的替代会有效降低La(Fe, M)13的宏观磁转变温度,影响磁性原子耦合作用,从而对热膨胀产生直接影响.对于x = 2.5的La(Fe13 - x Al x)样品,其在5~250 K范围内的平均αl为-0.78 × 10-6 K-1,如图7c和f[32]所示.因此,该类材料可以应用于对温度敏感的设备和器件中.除此之外,Wang等[33]通过调节La(Fe13 - x Si x)中Si的含量来调控热膨胀,在x = 2.4时,得到了低温零热膨胀材料(αl = -0.8 × 10-6 K-1,15~150 K). ...
... [31,32]Thermal expansion properties and macroscopic magnetic properties of La(Fe, M)13 (M = Si, Al) type metal materials[31,32]
(a, b) thermal expansions of LaFe13 - x Si x (x = 1.5, 2.0, 2.4) (a) and LaFe13 - x Si x hydrides (x = 1.5, 2.0, 2.4) (b)[31] (Δa / a300 K—rate of change of cell parameter relative to 300 K, ΔT—temperature difference) ...
... [31,32]
(a, b) thermal expansions of LaFe13 - x Si x (x = 1.5, 2.0, 2.4) (a) and LaFe13 - x Si x hydrides (x = 1.5, 2.0, 2.4) (b)[31] (Δa / a300 K—rate of change of cell parameter relative to 300 K, ΔT—temperature difference) ...
... (a, b) thermal expansions of LaFe13 - x Si x (x = 1.5, 2.0, 2.4) (a) and LaFe13 - x Si x hydrides (x = 1.5, 2.0, 2.4) (b)[31] (Δa / a300 K—rate of change of cell parameter relative to 300 K, ΔT—temperature difference) ...
... (c, d) macroscopic magnetisms of LaFe13 - x Si x (c) and LaFe13 - x Si x hydrides (d)[31] (Inset in Fig.7d shows the TC curves for original and hydrogenated LaFe13 - x Si x sample) ...
Abnormal thermal expansion properties of cubic NaZn13-type La(Fe, Al)13 compounds
6
2015
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... NaZn13型La(Fe, M)13 (M = Si和Al)基化合物因其各向同性和显著的负热膨胀、磁热效应、较高的导电/导热性能和优异的力学性能而被认为是有前景的负热膨胀材料之一[44,62~65].研究[31]发现,La(Fe, Si)13中La原子间隙容易被H、C和B等小原子占据,这会导致Curie温度向室温移动,并且使铁磁相在更高温度下存在,这为实现具有宽工作温度窗口的零热膨胀提供了机会.间隙原子改变了Fe—Fe距离,进而影响磁性能及其耦合的热膨胀.Li等[31]通过电解氢化法制备了La(Fe, Si)13氢化物,其中LaFe11.0Si2.0H y 在20~275 K范围内αl是0.5 × 10-6 K-1,比氢化前更接近零热膨胀,并且工作温区从15~175 K拓宽到20~275 K,如图7a~d[31]所示,相较于其他类别的零热膨胀材料是很少见的,在许多科学和技术领域都具有巨大应用潜力.Al的替代会有效降低La(Fe, M)13的宏观磁转变温度,影响磁性原子耦合作用,从而对热膨胀产生直接影响.对于x = 2.5的La(Fe13 - x Al x)样品,其在5~250 K范围内的平均αl为-0.78 × 10-6 K-1,如图7c和f[32]所示.因此,该类材料可以应用于对温度敏感的设备和器件中.除此之外,Wang等[33]通过调节La(Fe13 - x Si x)中Si的含量来调控热膨胀,在x = 2.4时,得到了低温零热膨胀材料(αl = -0.8 × 10-6 K-1,15~150 K). ...
... ,32]Thermal expansion properties and macroscopic magnetic properties of La(Fe, M)13 (M = Si, Al) type metal materials[31,32]
(a, b) thermal expansions of LaFe13 - x Si x (x = 1.5, 2.0, 2.4) (a) and LaFe13 - x Si x hydrides (x = 1.5, 2.0, 2.4) (b)[31] (Δa / a300 K—rate of change of cell parameter relative to 300 K, ΔT—temperature difference) ...
... ,32]
(a, b) thermal expansions of LaFe13 - x Si x (x = 1.5, 2.0, 2.4) (a) and LaFe13 - x Si x hydrides (x = 1.5, 2.0, 2.4) (b)[31] (Δa / a300 K—rate of change of cell parameter relative to 300 K, ΔT—temperature difference) ...
... (e) thermal expansion of LaFe13 - x Al x (x = 2.5, 2.7)[32] (SS304—304 stainless steel, ΔL / L(300 K)—linear thermal expansion reative to 300 K) ...
... (f) macroscopic magnetism of LaFe13 - x Al x (x = 1.8, 1.9, 2.1, 2.3, 2.5, 2.7)[32] (PM—paramagnetic) ...
Zero thermal expansion in NaZn13-type La(Fe,Si)13 compounds
2
2015
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... NaZn13型La(Fe, M)13 (M = Si和Al)基化合物因其各向同性和显著的负热膨胀、磁热效应、较高的导电/导热性能和优异的力学性能而被认为是有前景的负热膨胀材料之一[44,62~65].研究[31]发现,La(Fe, Si)13中La原子间隙容易被H、C和B等小原子占据,这会导致Curie温度向室温移动,并且使铁磁相在更高温度下存在,这为实现具有宽工作温度窗口的零热膨胀提供了机会.间隙原子改变了Fe—Fe距离,进而影响磁性能及其耦合的热膨胀.Li等[31]通过电解氢化法制备了La(Fe, Si)13氢化物,其中LaFe11.0Si2.0H y 在20~275 K范围内αl是0.5 × 10-6 K-1,比氢化前更接近零热膨胀,并且工作温区从15~175 K拓宽到20~275 K,如图7a~d[31]所示,相较于其他类别的零热膨胀材料是很少见的,在许多科学和技术领域都具有巨大应用潜力.Al的替代会有效降低La(Fe, M)13的宏观磁转变温度,影响磁性原子耦合作用,从而对热膨胀产生直接影响.对于x = 2.5的La(Fe13 - x Al x)样品,其在5~250 K范围内的平均αl为-0.78 × 10-6 K-1,如图7c和f[32]所示.因此,该类材料可以应用于对温度敏感的设备和器件中.除此之外,Wang等[33]通过调节La(Fe13 - x Si x)中Si的含量来调控热膨胀,在x = 2.4时,得到了低温零热膨胀材料(αl = -0.8 × 10-6 K-1,15~150 K). ...
Ultrawide temperature range super-Invar behavior of R2(Fe,Co)17 materials (R = rare earth)
6
2021
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
Zero thermal expansion with high Curie temperature in Ho2Fe16Cr alloy
3
2016
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
Controllable thermal expansion and magnetic structure in Er2(Fe, Co)14B intermetallic compounds
2
2019
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... R2Fe14B作为永磁材料已被广泛应用.其自发磁致伸缩性能早在1987年就被报道,之后发现其负热膨胀特性与磁性相关[69~71].Er2Fe14B具有复杂的磁结构,在低温时为亚铁磁结构,Er、Fe的磁矩随着温度变化存在自旋重取向,其中Er的磁矩倾向为面内各向异性,而Fe为轴向各向异性,在5 K时Fe磁矩与Er磁矩反向排列且与c轴成80°夹角,随温度升高磁矩向c轴旋转,在达到自旋重取向温度(TSR)时沿着c轴排列.Co的取代使R2Fe14B的晶胞参数减小,增加了相邻原子的磁交换积分和自旋耦合能力,导致TC升高并且磁矩随温度变化趋于平缓.作者研究团队[36]通过Co的掺杂调控磁性,来获得相应的热膨胀性能,磁贡献与磁矩变化速率相关联,其中Er2(Fe1 - x Co x)14B在x = 0.05时展现出优异的零热膨胀性能(αv = 1.5 × 10-6 K-1,120~475 K). ...
Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation
2
2017
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
Strong coupling of magnetism and lattice induces near-zero thermal expansion over broad temperature windows in ErFe10V2 - x Mo x Compounds
2
2021
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... 通常磁性金属基负热膨胀体系的异常热膨胀被限制在磁转变温度以下,并且温区较窄[29,79].为使温区进一步拓宽,大多采用过渡、稀土磁性原子去替代基体的磁性原子,从而改变磁交互作用以及总磁矩来进行调控.Li等[38]用非磁性原子Mo取代Fe、V位,研究了V、Mo对ErFe10V2 - x Mo x 磁结构的影响,并在ErFe10V1.4Mo0.6中实现了宽温区零热膨胀(αv = 4.81 × 10-6 K-1,120~440 K).通过对其晶体结构进行中子衍射测试解析发现,当x < 0.6时,Mo只占V8i位,而当x > 0.6时,Mo会进一步占据Fe8j和Fe8f位.随着Mo替代量的增加线膨胀持续降低,在x = 0.4和0.6时达到最小值.变温中子衍射和X射线吸收近边结构光谱分析发现,Fe与Mo存在价电子转移,在x ≤ 0.6时,铁磁矩会相应减小,表明Mo的替代减弱了Fe3d原子的局域磁矩和磁交互作用,并降低磁转变温度.因此,自发体积磁致伸缩被限制在较窄温区,从而减小了热膨胀系数. ...
Two-dimensional zero thermal expansion in low-cost Mn x Fe5 - x Si3 alloys via integrating crystallographic texture and magneto-volume effect
2
2022
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy
6
2017
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... [40~42]Anisotropic thermal expansion and cyclic properties of titanium-based shape memory alloys[40-42]
(a) evolution of macroscopic strain with temperature of rolled 60% (thickness reduction rate) Ti50.6Ni49.4 alloy sheet along RD, 22.5°, 33.5°, 45°, 67.5°, and TD after annealing for 60 min at 523 K[40] (RD—rolling direction, TD—transverse direction) ...
... [40-42]
(a) evolution of macroscopic strain with temperature of rolled 60% (thickness reduction rate) Ti50.6Ni49.4 alloy sheet along RD, 22.5°, 33.5°, 45°, 67.5°, and TD after annealing for 60 min at 523 K[40] (RD—rolling direction, TD—transverse direction) ...
... (a) evolution of macroscopic strain with temperature of rolled 60% (thickness reduction rate) Ti50.6Ni49.4 alloy sheet along RD, 22.5°, 33.5°, 45°, 67.5°, and TD after annealing for 60 min at 523 K[40] (RD—rolling direction, TD—transverse direction) ...
In-plane low thermal expansion of NiTi via controlled cross rolling
4
2021
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... (b) Ni50.8Ti49.2 alloy through three steps rolling (CroR-15%-10%-5%: the thickness of the first rolling direction is reduced by 15%-the thickness in the vertical direction from the first rolling direction is reduced by 10%-thickness is reduced by 5% along the first rolling direction) to a thickness of 30% of the total thickness after the internal macroscopic thermal expansion change[41] (CroR—cross rolling, TE—thermal expansion) ...
Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb
6
2021
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
Anisotropic thermal expansion and cyclic properties of titanium-based shape memory alloys[40-42]
(a) evolution of macroscopic strain with temperature of rolled 60% (thickness reduction rate) Ti50.6Ni49.4 alloy sheet along RD, 22.5°, 33.5°, 45°, 67.5°, and TD after annealing for 60 min at 523 K[40] (RD—rolling direction, TD—transverse direction) ...
... -42]
(a) evolution of macroscopic strain with temperature of rolled 60% (thickness reduction rate) Ti50.6Ni49.4 alloy sheet along RD, 22.5°, 33.5°, 45°, 67.5°, and TD after annealing for 60 min at 523 K[40] (RD—rolling direction, TD—transverse direction) ...
... (c) Ti22Nb CR (cold-rolled) plate along the rolling direction in eight cycles (cycle 01 Tmax (maximum temperature) = 350 oC, thermomechanical analyzer measurements were performed in cycle 02-08 at Tmax = 300 oC)[42] (Inset shows the transmission Kikuchi diffraction (TKD) band contrast (BC) + inverse pole figure (IPF) map inside a primary martensite lath in the sample heating to 350 oC) ...
Design of zero thermal expansion and high thermal conductivity in machinable xLFCS/Cu metal matrix composites
4
2022
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... [43]Multi-component reinforcement designs and thermal expansion performances of xLFCS/Cu metal matrix composites
(a, b) enhanced metal matrix composites (MMC) with a single NTE material (a) and a multi-component NTE material (b) ...
Realization of zero thermal expansion in La(Fe, Si)13-based system with high mechanical stability
3
2018
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... NaZn13型La(Fe, M)13 (M = Si和Al)基化合物因其各向同性和显著的负热膨胀、磁热效应、较高的导电/导热性能和优异的力学性能而被认为是有前景的负热膨胀材料之一[44,62~65].研究[31]发现,La(Fe, Si)13中La原子间隙容易被H、C和B等小原子占据,这会导致Curie温度向室温移动,并且使铁磁相在更高温度下存在,这为实现具有宽工作温度窗口的零热膨胀提供了机会.间隙原子改变了Fe—Fe距离,进而影响磁性能及其耦合的热膨胀.Li等[31]通过电解氢化法制备了La(Fe, Si)13氢化物,其中LaFe11.0Si2.0H y 在20~275 K范围内αl是0.5 × 10-6 K-1,比氢化前更接近零热膨胀,并且工作温区从15~175 K拓宽到20~275 K,如图7a~d[31]所示,相较于其他类别的零热膨胀材料是很少见的,在许多科学和技术领域都具有巨大应用潜力.Al的替代会有效降低La(Fe, M)13的宏观磁转变温度,影响磁性原子耦合作用,从而对热膨胀产生直接影响.对于x = 2.5的La(Fe13 - x Al x)样品,其在5~250 K范围内的平均αl为-0.78 × 10-6 K-1,如图7c和f[32]所示.因此,该类材料可以应用于对温度敏感的设备和器件中.除此之外,Wang等[33]通过调节La(Fe13 - x Si x)中Si的含量来调控热膨胀,在x = 2.4时,得到了低温零热膨胀材料(αl = -0.8 × 10-6 K-1,15~150 K). ...
... 近期,以La(Fe, Si)13为基体,通过双相来补偿其负热膨胀得到力学性能优异的零热膨胀材料也取得了一系列进展.Liu等[44]通过Cu掺杂得到LaFe10.6 - x Cu x Si2.4材料,X射线衍射分析发现,Cu的掺杂可以原位析出1∶13相、1∶1∶1相和α-Fe相,其中1∶13相作为负热膨胀相,1∶1∶1和α-Fe相作为正热膨胀相可以补偿其负热膨胀,达到调节材料整体热膨胀性能的目的.最终在LaFe10.1Cu0.5Si2.4中实现了优异的零热膨胀(αl = 2.8 × 10-7 K-1,185~250 K).另一项研究以(LaFe10.8CoSi1.2)100 - y-Cu y 进行双相设计,不仅在Cu45成分中实现了接近零的负热膨胀,并且LaCu2第二相与La(Fe, Co, Si)13相为半共格结构,可能导致了两相的协同变形,如图11d[94]所示.实验表明,引入的第二相强化可以使材料的力学性能以及疲劳寿命大幅提升. ...
Invar effect in the wide and higher temperature range by coherent coupling in Fe-based alloy
6
2024
... Thermal expansion data of zero thermal expansion metallic materials[14-46]Table 1
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
Thermal expansion control of different biphase alloy systems[14-16,45,94]
(a) zero thermal expansion dual-phase alloy obtained by synergistic combination of negative thermal expansion L phase (La(Fe, Co, Si)13) and positive thermal expansion α phase (α-(Fe, Co, Si)) (αCalc.—calculated S-3 ZTE (empty circle point line) is derived from L-phase and α phase thermal expansions)[14] ...
... ,45,94]
(a) zero thermal expansion dual-phase alloy obtained by synergistic combination of negative thermal expansion L phase (La(Fe, Co, Si)13) and positive thermal expansion α phase (α-(Fe, Co, Si)) (αCalc.—calculated S-3 ZTE (empty circle point line) is derived from L-phase and α phase thermal expansions)[14] ...
... (f) cyclic thermal expansion properties of Fe2.85Mn0.15PtB0.25[45] ...
... Thermal expansion data of zero thermal expansion metallic materials[14-46] ...
... [46]
Note:αl—linear coefficient of thermal expansion (CTE); Temp. range—zero expansion temperature zone; superscript a—if the thermal expansion is anisotropic zero volume expansion, αl is estimated by αv (αv is volume CTE); superscript b—uniaxial zero thermal expansion; xLFCS—multicomponent material ...
... (Hf1 - x Ta x)Fe2是典型的负热膨胀体系,在x = 0.05~1.0范围内,均保持为MgZn2型六方结构[97].在x = 0.175时,表现出巨大的体积负热膨胀(ΔV / V = 0.80%),其负膨胀效应来源于铁磁-反铁磁一级磁相变[98].Cen等[46]发现,铸态(Hf, Ta)Fe2存在富Fe晶界,而经过1273 K退火7 d后,富Fe晶界会消失.由此,通过调控Fe含量,使得析出的富Fe相的正热膨胀与(Hf, Ta)Fe2的负膨胀相互抵消,设计出了室温零热膨胀材料Hf0.8Ta0.2Fe2.5 (αl= 0.352 × 10-6 K-1,265~350 K). ...
... [48]Calculated spin configurations at Fe (orange) and Ni (blue) atoms in fully ordered ferromagnetic states (0 K), ambient states, and paramagnetic states (The size of the arrow is proportional to the calculated magnetic moment)[48] (a), the relationship between the magnetization of Invar alloy and the pressure (P)[48] (b), comparison of linear expansion of Invar alloy, Fe, Cu and Al (Δl / l0—relative length variation) (c), change of phonon entropy and magnetic entropy of Invar alloy with pressure (Sph—phonon entropy; ΔSmag—magnetic entropy change)[48] (d), and change of the sum of phonon entropy and magnetic entropy (ΔSph—phonon entropy change)[48] (e)Fig.42.2 AFe2(A = Zr、Nb、Hf、Ta、Sc和Ti)型金属材料
... [48] (a), the relationship between the magnetization of Invar alloy and the pressure (P)[48] (b), comparison of linear expansion of Invar alloy, Fe, Cu and Al (Δl / l0—relative length variation) (c), change of phonon entropy and magnetic entropy of Invar alloy with pressure (Sph—phonon entropy; ΔSmag—magnetic entropy change)[48] (d), and change of the sum of phonon entropy and magnetic entropy (ΔSph—phonon entropy change)[48] (e)Fig.42.2 AFe2(A = Zr、Nb、Hf、Ta、Sc和Ti)型金属材料
... [48] (b), comparison of linear expansion of Invar alloy, Fe, Cu and Al (Δl / l0—relative length variation) (c), change of phonon entropy and magnetic entropy of Invar alloy with pressure (Sph—phonon entropy; ΔSmag—magnetic entropy change)[48] (d), and change of the sum of phonon entropy and magnetic entropy (ΔSph—phonon entropy change)[48] (e)Fig.42.2 AFe2(A = Zr、Nb、Hf、Ta、Sc和Ti)型金属材料
... [48] (d), and change of the sum of phonon entropy and magnetic entropy (ΔSph—phonon entropy change)[48] (e)Fig.42.2 AFe2(A = Zr、Nb、Hf、Ta、Sc和Ti)型金属材料
Thermal expansion control of different biphase alloy systems[14-16,45,94]
(a) zero thermal expansion dual-phase alloy obtained by synergistic combination of negative thermal expansion L phase (La(Fe, Co, Si)13) and positive thermal expansion α phase (α-(Fe, Co, Si)) (αCalc.—calculated S-3 ZTE (empty circle point line) is derived from L-phase and α phase thermal expansions)[14] ...
... ,94]
(a) zero thermal expansion dual-phase alloy obtained by synergistic combination of negative thermal expansion L phase (La(Fe, Co, Si)13) and positive thermal expansion α phase (α-(Fe, Co, Si)) (αCalc.—calculated S-3 ZTE (empty circle point line) is derived from L-phase and α phase thermal expansions)[14] ...
... (d) linear thermal expansion curves of samples in (LaFe10.8CoSi1.2)100 - y -Cu y alloys where y = 0, 15, 25, 35, and 45[94] ...
... 近期,以La(Fe, Si)13为基体,通过双相来补偿其负热膨胀得到力学性能优异的零热膨胀材料也取得了一系列进展.Liu等[44]通过Cu掺杂得到LaFe10.6 - x Cu x Si2.4材料,X射线衍射分析发现,Cu的掺杂可以原位析出1∶13相、1∶1∶1相和α-Fe相,其中1∶13相作为负热膨胀相,1∶1∶1和α-Fe相作为正热膨胀相可以补偿其负热膨胀,达到调节材料整体热膨胀性能的目的.最终在LaFe10.1Cu0.5Si2.4中实现了优异的零热膨胀(αl = 2.8 × 10-7 K-1,185~250 K).另一项研究以(LaFe10.8CoSi1.2)100 - y-Cu y 进行双相设计,不仅在Cu45成分中实现了接近零的负热膨胀,并且LaCu2第二相与La(Fe, Co, Si)13相为半共格结构,可能导致了两相的协同变形,如图11d[94]所示.实验表明,引入的第二相强化可以使材料的力学性能以及疲劳寿命大幅提升. ...
Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation