|
|
零热膨胀金属材料研究进展 |
宋玉柱1( ), 张济民1, 周畅2, 施耐克1, 陈骏1( ) |
1 北京科技大学 物理化学系 北京 100083 2 北京科技大学 新金属材料国家重点实验室 北京 100083 |
|
Research Progress on Zero Thermal Expansion Metallic Materials |
SONG Yuzhu1( ), ZHANG Jimin1, ZHOU Chang2, SHI Naike1, CHEN Jun1( ) |
1 Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China 2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
宋玉柱, 张济民, 周畅, 施耐克, 陈骏. 零热膨胀金属材料研究进展[J]. 金属学报, 2025, 61(6): 809-825.
Yuzhu SONG,
Jimin ZHANG,
Chang ZHOU,
Naike SHI,
Jun CHEN.
Research Progress on Zero Thermal Expansion Metallic Materials[J]. Acta Metall Sin, 2025, 61(6): 809-825.
1 |
Zhao C Z, Wang X, Li Z, et al. Research progress in the design, manufacturing, characterization, and evaluation of tailorable thermal expansion mechanical metamaterials [J]. Acta Mater. Compositae Sin., 2024, 41: 4589
|
1 |
赵淳铮, 王 昕, 李 振 等. 可调控热膨胀力学超材料设计制备与表征评测研究进展 [J]. 复合材料学报, 2024, 41: 4589
|
2 |
Chen J, Hu L, Deng J X, et al. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications [J]. Chem. Soc. Rev., 2015, 44: 3522
doi: 10.1039/c4cs00461b
pmid: 25864730
|
3 |
Mohn P. A century of zero expansion [J]. Nature, 1999, 400: 18
|
4 |
Sleight A. Zero-expansion plan [J]. Nature, 2003, 425: 674
|
5 |
Guillaume C E. Recherches sur les aciers au nickel. Dilatations aux températures élevées; résistance électrique [J]. Compt. Rend, 1897, 125: 235
|
6 |
Mary T A, Evans J S O, Vogt T, et al. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8 [J]. Science, 1996, 272: 90
|
7 |
Song Y Z, Shi N K, Deng S Q, et al. Negative thermal expansion in magnetic materials [J]. Prog. Mater. Sci., 2021, 121: 100835
|
8 |
Wang C, Sun Y, Wang L, et al. Progress on abnormal thermal expansion materials [J]. Mater. China, 2015, 34: 497
|
8 |
王 聪, 孙 莹, 王 蕾 等. 反常热膨胀功能材料的研究进展 [J]. 中国材料进展, 2015, 34: 497
|
9 |
van Schilfgaarde M, Abrikosov I A, Johansson B. Origin of the Invar effect in iron-nickel alloys [J]. Nature, 1999, 400: 46
|
10 |
Zhao Y Y, Hu F X, Bao L F, et al. Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure [J]. J. Am. Chem. Soc., 2015, 137: 1746
|
11 |
Shen F R, Zhou H B, Hu FX, et al. Cone-spiral magnetic ordering dominated lattice distortion and giant negative thermal expansion in Fe-doped MnNiGe compounds [J]. Mater. Horizons, 2020, 7: 804
|
12 |
Azuma M, Chen W T, Seki H, et al. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer [J]. Nat. Commun., 2011, 2: 347
|
13 |
Long Y W, Hayashi N, Saito T, et al. Temperature-induced A-B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite [J]. Nature, 2009, 458: 60
|
14 |
Yu C Y, Lin K, Zhang Q H, et al. An isotropic zero thermal expansion alloy with super-high toughness [J]. Nat. Commun., 2024, 15: 2252
doi: 10.1038/s41467-024-46613-0
pmid: 38480744
|
15 |
Yu C Y, Lin K, Jiang S H, et al. Plastic and low-cost axial zero thermal expansion alloy by a natural dual-phase composite [J]. Nat. Commun., 2021, 12: 4701
doi: 10.1038/s41467-021-25036-1
pmid: 34349119
|
16 |
Yu C Y, Lin K, Chen X, et al. Superior zero thermal expansion dual-phase alloy via boron-migration mediated solid-state reaction [J]. Nat. Commun., 2023, 14: 3135
doi: 10.1038/s41467-023-38929-0
pmid: 37253768
|
17 |
Guillaume C É. Recherches sur les aciers au nickel [J]. J. Phys. Theor. Appl., 1898, 7: 262
|
18 |
Song Y Z, Sun Q, Yokoyama T, et al. Transforming thermal expansion from positive to negative: The case of cubic magnetic compounds of (Zr, Nb)Fe2 [J]. J. Phys. Chem. Lett., 2020, 11: 1954
|
19 |
Sun Y M, Cao Y L, Hu S X, et al. Interplanar ferromagnetism enhanced ultrawide zero thermal expansion in kagome cubic intermetallic (Zr, Nb)Fe2 [J]. J. Am. Chem. Soc., 2023, 145: 17096
|
20 |
Li W J, Lin K, Yan Y, et al. A seawater‐corrosion‐resistant and isotropic zero thermal expansion (Zr, Ta)(Fe, Co)2 alloy [J]. Adv. Mater., 2022, 34: 2109592
|
21 |
Cao Y L, Xu Y, Khmelevskyi S, et al. Interplanar magnetic orders and symmetry-tuned zero thermal expansion in kagomé metal (Zr,Ta)Fe2 [J]. Chem. Mater., 2023, 35: 9167
|
22 |
Song Y Z, Sun Q, Xu M, et al. Negative thermal expansion in (Sc,Ti)Fe2 induced by an unconventional magnetovolume effect [J]. Mater. Horizons, 2020, 7: 275
|
23 |
Jing-Ting Z, Yibole H, Narsu B, et al. Structural and magnetic properties of Sc1 - x Nb x Fe2 intermetallics showing anomalous zero thermal expansion [J]. Intermetallics, 2021, 136: 107252
|
24 |
Xu M, Song Y Z, Xu Y J, et al. High-temperature zero thermal expansion in HfFe2 + δ from added ferromagnetic paths [J]. Chem. Mater., 2022, 34: 9437
|
25 |
Dong X Y, Lin K, Yu C Y, et al. Zero thermal expansion in non-stoichiometric and single-phase (Hf, Nb) Fe2.5 alloy [J]. Scr. Mater., 2023, 229: 115388
|
26 |
Lin K, Zhang W B, Yu C Y, et al. Chemical heterogeneity modulated zero thermal expansion alloy over super-wide temperature range [J]. Cell Rep. Phys. Sci., 2023, 4: 101254
|
27 |
Xu J W, Wang Z, Huang H, et al. Significant zero thermal expansion via enhanced magnetoelastic coupling in kagome magnets [J]. Adv. Mater., 2023, 35: 2208635
|
28 |
Song Y Z, Chen J, Liu X Z, et al. Zero thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds [J]. J. Am. Chem. Soc., 2018, 140: 602
|
29 |
Hu J Y, Lin K, Cao Y L, et al. Adjustable magnetic phase transition inducing unusual zero thermal expansion in cubic RCo2-based intermetallic compounds (R = rare earth) [J]. Inorg. Chem., 2019, 58: 5401
|
30 |
Hao J Z, Shen F R, Hu F X, et al. Realization of ultra-low thermal expansion over a broad temperature interval in Gd x (Dy0.5Ho0.5)1 - x -Co2 compounds [J]. Scr. Mater., 2020, 185: 181
|
31 |
Li S P, Huang R J, Zhao Y Q, et al. Zero thermal expansion achieved by an electrolytic hydriding method in La(Fe,Si)13 compounds [J]. Adv. Funct. Mater., 2017, 27: 1604195
|
32 |
Li W, Huang R J, Wang W, et al. Abnormal thermal expansion properties of cubic NaZn13-type La(Fe, Al)13 compounds [J]. Phys. Chem. Chem. Phys., 2015, 17: 5556
|
33 |
Wang W, Huang R J, Li W, et al. Zero thermal expansion in NaZn13-type La(Fe,Si)13 compounds [J]. Phys. Chem. Chem. Phys., 2015, 17: 2352
doi: 10.1039/c4cp04672b
pmid: 25503989
|
34 |
Cao Y L, Lin K, Khmelevskyi S, et al. Ultrawide temperature range super-Invar behavior of R2(Fe,Co)17 materials (R = rare earth) [J]. Phys. Rev. Lett., 2021, 127: 055501
|
35 |
Dan S, Mukherjee S, Mazumdar C, et al. Zero thermal expansion with high Curie temperature in Ho2Fe16Cr alloy [J]. RSC Adv., 2016, 6: 94809
|
36 |
Qiao Y Q, Song Y Z, Xu M, et al. Controllable thermal expansion and magnetic structure in Er2(Fe, Co)14B intermetallic compounds [J]. Inorg. Chem. Front., 2019, 6: 3225
|
37 |
Shen F R, Kuang H, Hu F X, et al. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation [J]. APL Mater., 2017, 5: 106102
|
38 |
Li W J, Lin K, Cao Y L, et al. Strong coupling of magnetism and lattice induces near-zero thermal expansion over broad temperature windows in ErFe10V2 - x Mo x Compounds [J]. CCS Chem., 2021, 3: 1009
|
39 |
Yu C Y, Lin K, Cao Y L, et al. Two-dimensional zero thermal expansion in low-cost Mn x Fe5 - x Si3 alloys via integrating crystallographic texture and magneto-volume effect [J]. Sci. China Mater., 2022, 65: 1912
|
40 |
Ahadi A, Matsushita Y, Sawaguchi T, et al. Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy [J]. Acta Mater., 2017, 124: 79
|
41 |
Li Q, Deng Z Z, Onuki Y, et al. In-plane low thermal expansion of NiTi via controlled cross rolling [J]. Acta Mater., 2021, 204: 116506
|
42 |
Wang H L, Lai D K Z, Xu J P, et al. Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb [J]. Scr. Mater., 2021, 205: 114222
|
43 |
Pang X L, Song Y Z, Shi N K, et al. Design of zero thermal expansion and high thermal conductivity in machinable xLFCS/Cu metal matrix composites [J]. Composites, 2022, 238B: 109883
|
44 |
Liu J, Gong Y Y, Wang J W, et al. Realization of zero thermal expansion in La(Fe, Si)13-based system with high mechanical stability [J]. Mater. Des., 2018, 148: 71
|
45 |
Cui J, Sun Y, Shi K W, et al. Invar effect in the wide and higher temperature range by coherent coupling in Fe-based alloy [J]. Adv. Funct. Mater., 2024, 34: 2309431
|
46 |
Cen D Y, Wang B, Chu R X, et al. Design of (Hf,Ta)Fe2/Fe composite with zero thermal expansion covering room temperature [J]. Scr. Mater., 2020, 186: 331
|
47 |
Weiss R J. The origin of the ‘Invar’ effect [J]. Proc. Phys. Soc., 1963, 82: 281
|
48 |
Lohaus S H, Heine M, Guzman P, et al. A thermodynamic explanation of the Invar effect [J]. Nat. Phys., 2023, 19: 1642
|
49 |
Khmelevskyi S, Turek I, Mohn P. Large negative magnetic contribution to the thermal expansion in iron-platinum alloys: Quantitative theory of the Invar effect [J]. Phys. Rev. Lett., 2003, 91: 037201
|
50 |
Matsui M, Shimizu T, Yamada H, et al. Magnetic properties and thermal expansion of Fe-Pd Invar alloys [J]. J. Magn. Magn. Mater., 1980, 15-18: 1201
|
51 |
Rode V E, Finkelberg S A, Lyalin A I, et al. Invar anomalies of Fe-Cr alloys [J]. J. Magn. Magn. Mater., 1983, 31-34: 293
|
52 |
Nishihara Y, Yamaguchi Y. Magnetic properties of the (Sc1 - x Ti x)-Fe2 system having two magnetic states with different degrees of localization [J]. J. Phys. Soc. Jpn., 1986, 55: 920
|
53 |
Li L F, Tong P, Zou Y M, et al. Good comprehensive performance of Laves phase Hf1 - x Ta x Fe2 as negative thermal expansion materials [J]. Acta Mater., 2018, 161: 258
|
54 |
Qiao Y Q, Song Y Z, Lin K, et al. Negative thermal expansion in (Hf, Ti)Fe2 induced by the ferromagnetic and antiferromagnetic phase coexistence [J]. Inorg. Chem., 2019, 58: 5380
|
55 |
Song Y Z, Chen J, Liu X Z, et al. Structure, magnetism, and tunable negative thermal expansion in (Hf,Nb)Fe2 alloys [J]. Chem. Mater., 2017, 29: 7078
|
56 |
Shiga M, Nakamura Y. Magnetovolume effects and Invar characters of (Zr1 - x Nb x)Fe2 [J]. J. Phys. Soc. Jpn., 1979, 47: 1446
|
57 |
Muraoka Y, Okuda H, Shiga M, et al. Magnetovolume effects in Gd x Y1 - x Co2 [J]. J. Phys. Soc. Jpn., 1984, 53: 331
|
58 |
Gratz E, Markosyan A S. Physical properties of RCo2 Laves phases [J]. J. Phys., 2001, 13: R385
|
59 |
von Ranke P J, de Oliveira N A. On the nature of the magnetic phase transition of the HoCo2 intermetallic [J]. J. Appl. Phys., 1998, 83: 6967
|
60 |
Morrison K, Dupas A, Mudryk Y, et al. Identifying the critical point of the weakly first-order itinerant magnet DyCo2 with complementary magnetization and calorimetric measurements [J]. Phys. Rev., 2013, 87B: 134421
|
61 |
Lizárraga R. Structural and magnetic properties of the Gd-based bulk metallic glasses GdFe2, GdCo2, and GdNi2 from first principles [J]. Phys. Rev., 2016, 94B: 174201
|
62 |
Huang R J, Liu Y Y, Fan W, et al. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds [J]. J. Am. Chem. Soc., 2013, 135: 11469
|
63 |
Song Y Z, Huang R J, Liu Y, et al. Magnetic-field-induced strong negative thermal expansion in La(Fe, Al)13 [J]. Chem. Mater., 2020, 32: 7535
|
64 |
Shen B G, Hu F X, Dong Q Y, et al. Magnetic properties and magnetocaloric effects in NaZn13-type La(Fe, Al)13-based compounds [J]. Chin. Phys., 2013, 22B: 017502
|
65 |
Long F X, Song Y Z, Chen J. La(Fe, Si/Al)13-based materials with exceptional magnetic functionalities: A review [J]. Microstructures, 2024, 4: 2024011
|
66 |
Cao Y L, Zhou H W, Khmelevskyi S, et al. Pressure-modulated magnetism and negative thermal expansion in the Ho2Fe17 intermetallic compound [J]. Chem. Mater., 2023, 35: 3249
|
67 |
Givord D, Lemaire R. Magnetic transition and anomalous thermal expansion in R2Fe17 compounds [J]. IEEE Trans. Magn., 1974, 10: 109
|
68 |
Cao Y L, Lin K, Liu Z N, et al. Zero thermal expansion and its mechanism of Ho2Fe11Al6 intermetallic compounds at low temperature [J]. J. Chin. Soc. Rare Earths, 2020, 38: 440
|
68 |
曹宜力, 林 鲲, 刘占宁 等. Ho2Fe11Al6金属间化合物的低温零热膨胀及其机制 [J]. 中国稀土学报, 2020, 38: 440
|
69 |
Buschow K H J, Grössinger R. Spontaneous volume magnetostriction in R2Fe14B compounds [J]. J. Less Common Met., 1987, 135: 39
|
70 |
Cheng B P, Yang Y C, Fu S C, et al. Thermal expansion anomalies of R2(Fe1 - x M x)14B [J]. J. Appl. Phys., 1987, 61: 3586
|
71 |
Loewenhaupt M, Prager M, Murani A P, et al. Inelastic neutron scattering on RE2Fe14B (RE = Y, Ce, Nd, Dy and Er) [J]. J. Magn. Magn. Mater., 1988, 76: 408
|
72 |
Yang S, Ma S C, Liu K, et al. Controllable negative thermal expansion by mechanical pulverizing in hexagonal Mn0.965Co1.035Ge compounds [J]. Inorg. Chem., 2018, 57: 14199
|
73 |
Ren Q Y, Hutchison W, Wang J L, et al. Negative thermal expansion of Ni-doped MnCoGe at room-temperature magnetic tuning [J]. ACS Appl. Mater. Interfaces, 2019, 11: 17531
|
74 |
Liu Y, Qiao K M, Zuo S L, et al. Negative thermal expansion and magnetocaloric effect in Mn-Co-Ge-In thin films [J]. Appl. Phys. Lett., 2018, 112: 012401
|
75 |
Liu E K, Wang W H, Feng L, et al. Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets [J]. Nat. Commun., 2012, 3: 873
doi: 10.1038/ncomms1868
pmid: 22643900
|
76 |
Caron L, Trung N T, Brück E, et al. Pressure-tuned magnetocaloric effect in Mn0.93Cr0.07CoGe [J]. Phys. Rev., 2011, 84B: 020414
|
77 |
Wu R R, Bao L F, Hu F X, et al. Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature [J]. Sci. Rep., 2015, 5: 18027
|
78 |
Sun X M, Cong D Y, Ren Y, et al. Giant negative thermal expansion in Fe-Mn-Ga magnetic shape memory alloys [J]. Appl. Phys. Lett., 2018, 113: 041903
|
79 |
Coates C S, Goodwin A L. How to quantify isotropic negative thermal expansion: Magnitude, range, or both? [J]. Mater. Horizons, 2019, 6: 211
|
80 |
Xu J H, Liu X M, Xia Y H, et al. Magnetic properties and magnetocaloric effect of (Mn1 - x Fe x)5Sn3 (x = 0-0.5) compounds [J]. J. Appl. Phys., 2013, 113: 17A921
|
81 |
Sürgers C, Kittler W, Wolf T, et al. Anomalous Hall effect in the noncollinear antiferromagnet Mn5Si3 [J]. AIP Adv., 2016, 6: 055604
|
82 |
Kainuma R, Wang J J, Omori T, et al. Invar-type effect induced by cold-rolling deformation in shape memory alloys [J]. Appl. Phys. Lett., 2002, 80: 4348
|
83 |
Nakai M, Niinomi M, Akahori T, et al. Anomalous thermal expansion of cold-rolled Ti-Nb-Ta-Zr alloy [J]. Mater. Trans., 2009, 50: 423
|
84 |
Saito T, Furuta T, Hwang J H, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism [J]. Science, 2003, 300: 464
pmid: 12702870
|
85 |
Kim H Y, Wei L S, Kobayashi S, et al. Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti-23Nb-2Zr-0.7Ta-1.2O alloy [J]. Acta Mater., 2013, 61: 4874
|
86 |
Wei L S, Kim H Y, Miyazaki S. Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti-Nb-Zr-Ta-O alloys [J]. Acta Mater., 2015, 100: 313
|
87 |
Monroe J A, Gehring D, Karaman I, et al. Tailored thermal expansion alloys [J]. Acta Mater., 2016, 102: 333
|
88 |
Bönisch M, Panigrahi A, Stoica M, et al. Giant thermal expansion and α-precipitation pathways in Ti-alloys [J]. Nat. Commun., 2017, 8: 1429
|
89 |
Demakov S, Semkina I, Stepanov S I. Abnormal behavior of lattice spacing of titanium orthorhombic martensite [J]. Mater. Sci. Forum, 2017, 907: 14
|
90 |
Rao Z Y, Tung P Y, Xie R W, et al. Machine learning-enabled high-entropy alloy discovery [J]. Science, 2022, 378: 78
doi: 10.1126/science.abo4940
pmid: 36201584
|
91 |
Zhao Y Q, Huang R J, Shan Y, et al. Low-temperature abnormal thermal expansion property of Mn doped cubic NaZn13-type La(Fe, Al)13 compounds [J]. J. Phys., 2017, 897: 012005
|
92 |
Sun B H, Lu W J, Gault B, et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels [J]. Nat. Mater., 2021, 20: 1629
doi: 10.1038/s41563-021-01050-y
pmid: 34239084
|
93 |
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
|
94 |
Liu Y, Li J, Qian Y, et al. Isotropic negative thermal expansion in the multiple-phase La-Fe-Co-Si-Cu alloys with enhanced strength and ductility [J]. Acta Mater., 2024, 275: 120058
|
95 |
Kakeshita T, Takeuchi T, Fukuda T, et al. Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation [J]. Appl. Phys. Lett., 2000, 77: 1502
|
96 |
Li Q, Ren Y, Zhang Q H, et al. Chemical order-disorder nanodomains in Fe3Pt bulk alloy [J]. Natl. Sci. Rev., 2022, 9: nwac053
|
97 |
Rechenberg H R, Morellon L, Algarabel P A, et al. Magnetic moment at highly frustrated sites of antiferromagnetic Laves phase structures [J]. Phys. Rev., 2005, 71B: 104412
|
98 |
Diop L V B, Isnard O, Suard E, et al. Neutron diffraction study of the itinerant-electron metamagnetic Hf0.825Ta0.175Fe2 compound [J]. Solid State Commun., 2016, 229: 16
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|