Please wait a minute...
金属学报  2025, Vol. 61 Issue (6): 809-825    DOI: 10.11900/0412.1961.2024.00264
  综述 本期目录 | 过刊浏览 |
零热膨胀金属材料研究进展
宋玉柱1(), 张济民1, 周畅2, 施耐克1, 陈骏1()
1 北京科技大学 物理化学系 北京 100083
2 北京科技大学 新金属材料国家重点实验室 北京 100083
Research Progress on Zero Thermal Expansion Metallic Materials
SONG Yuzhu1(), ZHANG Jimin1, ZHOU Chang2, SHI Naike1, CHEN Jun1()
1 Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

宋玉柱, 张济民, 周畅, 施耐克, 陈骏. 零热膨胀金属材料研究进展[J]. 金属学报, 2025, 61(6): 809-825.
Yuzhu SONG, Jimin ZHANG, Chang ZHOU, Naike SHI, Jun CHEN. Research Progress on Zero Thermal Expansion Metallic Materials[J]. Acta Metall Sin, 2025, 61(6): 809-825.

全文: PDF(3675 KB)   HTML
摘要: 

随着科技的进步,人们对太空、海洋和地下资源的探索不断深化,需要在极端条件下运行的设备日益增多,对材料的热膨胀性能调控要求也越来越高。零热膨胀金属材料的尺寸在温度变化的环境中依然能够保持不变,这一特殊功能对于需要高精密、高稳定性的器件来说具有重要应用价值。本文总结了因瓦(Invar)合金被发现100多年以来的零热膨胀金属材料的研究进展,从零热膨胀金属材料的定义、分类、发展历程进行综述,介绍了诱导金属材料零热膨胀的几种主要机制,同时列举了几类零热膨胀性能优异且应用价值高的金属材料,并对不同类型金属材料的晶体结构、零热膨胀性能和热膨胀调控方法等进行了阐述,讨论了磁性、相转变与热膨胀性能之间的耦合关系。最后对零热膨胀金属材料未来发展趋势进行了展望。

关键词 零热膨胀低热膨胀合金金属功能材料热膨胀调控    
Abstract

With the advancement of technology, the exploration of space, oceans, and underground resources continues to deepen. An ever-increasing demand for devices that operate under extreme conditions propels the need for the precise control of the thermal expansion properties of the materials used. Zero thermal expansion metals exhibit constant dimensions despite temperature variations, a unique feature that imparts these metals a significant application value in high-precision and high-stability devices. This article summarizes the research progress on zero thermal expansion metals since the discovery of Invar alloy over a century ago. It provides an overview of the definition, classification, and historical development of zero thermal expansion metals. Furthermore, this article introduces several main mechanisms inducing zero thermal expansion in metals and highlights several categories of metals with excellent zero thermal expansion properties and high application value. Moreover, it discusses the crystal structures, zero thermal expansion properties, and methods for controlling the thermal expansion properties of different types of metals. The coupling relationship between the magnetism, phase transitions, and thermal expansion properties is explored. Finally, the article provides a perspective on future trends in the development of zero thermal expansion metals.

Key wordszero thermal expansion    low thermal expansion alloy    functional metallic material    thermal expansion control
收稿日期: 2024-07-31     
ZTFLH:  O482.2  
基金资助:国家重点研发计划项目(2022YFE0109100);国家自然科学基金项目(22275014);国家自然科学基金项目(12104038);北京高等学校卓越青年科学家计划项目(JWZQ20240101015)
通讯作者: 宋玉柱,yuzhusong@ustb.edu.cn,主要从事低膨胀合金和磁性材料研究;
陈 骏,junchen@ustb.edu.cn,主要从事磁电热固体功能材料结构、性能及产业化应用研究
Corresponding author: SONG Yuzhu, associate professor, Tel: (010)62332265, E-mail: yuzhusong@ustb.edu.cn;
CHEN Jun, professor, Tel: (010)62332265, E-mail: junchen@ustb.edu.cn
作者简介: 宋玉柱,男,1990年生,副教授,博士
图1  金属材料的零热膨胀:来源于晶格振动对体积正的贡献(ΔV2)与磁体积效应、马氏体相变或价态转变对体积负的贡献(ΔV1)相互抵消的结果
图2  铁磁有序磁结构逐渐转变为无序顺磁结构时Invar合金体积逐渐缩小的过程[9]
MaterialTypeαl / (10-6 K-1)Temp. range / KRef.
Fe0.65Ni0.35Invar1.5193-373[17]
Zr0.8Nb0.2Fe2AFe21.43-470[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe20.474-425[19]
Zr0.8Ta0.2Fe1.7Co0.30.21100-360[20]
Zr0.7Ta0.3Fe20.910-430[21]
Sc0.55Ti0.45Fe20.41a10-250[22]
Sc0.725Nb0.275Fe20.69108-264[23]
HfFe2.50.42a433-583[24]
Hf0.8Nb0.2Fe2.50.06a250-380[25]
Hf0.6Ti0.4Fe2.50.53a100-450[26]
Hf0.85Ta0.15Fe2C0.010.8a85-245[27]
Tb(Co1.9Fe0.1)RCo20.48123-307[28]
Gd0.25Dy0.75Co1.93Fe0.070.1610-275[29]
Gd0.5(Ho0.5Dy0.5)0.5Co21.35-220[30]
LaFe11.0Si2.0 hydrideLa(Fe, M)130.520-275[31]
LaFe10.3Al2.70.364.2-250[32]
LaFe10.6Si2.4-0.815-150[33]
Ho2Fe16CoR2Fe170.07a3-461[34]
Ho2Fe16Cr0.43a13-330[35]
Er2(Fe0.95Co0.05)14BR2Fe14B0.5a120-475[36]
MnCoGe0.99In0.01MnCoGe0.68200-310[37]
ErFe10V1.4Mo0.6RFe121.6120-440[38]
MnFe4Si3Mn5Si30.45b10-310[39]
Ni49.4Ti50.6Ti-based0.53b123-353[40]
Ni50.8Ti49.22.3b77-300[41]
Ti22Nb0.2b273-573[42]
xLFCS/39.7%Cu (volume fraction)Duplex alloy-0.21200-320[43]
LaFe54Co3.5Si3.351.10260-310[14]
Ho0.04Fe0.960.19b100-335[15]
LaFe10.1Cu0.5Si2.40.28185-250[44]
Er2Fe19B1.350.28100-500[16]
Fe2.75Co0.25PtB0.250.95360-560[45]
Hf0.8Ta0.2Fe2.50.352265-350[46]
表1  零热膨胀金属材料的热膨胀数据[14~46]
图3  不同金属材料零膨胀温区对比
图4  Invar合金的热膨胀、磁结构以及热力学模拟分析[48]
图5  AFe2 (A = Zr、Nb、Hf、Ta、Sc和Ti)体系零热膨胀性能[18,19,21,22,24,26]
图6  RCo2 (R = Tb、Gd和Dy)体系的磁结构、晶体结构以及热膨胀调控[28,29]
图7  La(Fe, M)13 (M = Si, Al)型金属材料热膨胀性能及宏观磁性[31,32]
图8  Ho2(Fe, Co)17的热膨胀性能以及热膨胀调控机制[34]
图9  钛基形状记忆合金各向异性热膨胀以及循环性能[40~42]
图10  xLFCS/Cu金属基复合材料的多组分增强体设计以及热膨胀性能[43]
图11  不同双相合金体系的热膨胀调控[14~16,45,94]
1 Zhao C Z, Wang X, Li Z, et al. Research progress in the design, manufacturing, characterization, and evaluation of tailorable thermal expansion mechanical metamaterials [J]. Acta Mater. Compositae Sin., 2024, 41: 4589
1 赵淳铮, 王 昕, 李 振 等. 可调控热膨胀力学超材料设计制备与表征评测研究进展 [J]. 复合材料学报, 2024, 41: 4589
2 Chen J, Hu L, Deng J X, et al. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications [J]. Chem. Soc. Rev., 2015, 44: 3522
doi: 10.1039/c4cs00461b pmid: 25864730
3 Mohn P. A century of zero expansion [J]. Nature, 1999, 400: 18
4 Sleight A. Zero-expansion plan [J]. Nature, 2003, 425: 674
5 Guillaume C E. Recherches sur les aciers au nickel. Dilatations aux températures élevées; résistance électrique [J]. Compt. Rend, 1897, 125: 235
6 Mary T A, Evans J S O, Vogt T, et al. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8 [J]. Science, 1996, 272: 90
7 Song Y Z, Shi N K, Deng S Q, et al. Negative thermal expansion in magnetic materials [J]. Prog. Mater. Sci., 2021, 121: 100835
8 Wang C, Sun Y, Wang L, et al. Progress on abnormal thermal expansion materials [J]. Mater. China, 2015, 34: 497
8 王 聪, 孙 莹, 王 蕾 等. 反常热膨胀功能材料的研究进展 [J]. 中国材料进展, 2015, 34: 497
9 van Schilfgaarde M, Abrikosov I A, Johansson B. Origin of the Invar effect in iron-nickel alloys [J]. Nature, 1999, 400: 46
10 Zhao Y Y, Hu F X, Bao L F, et al. Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure [J]. J. Am. Chem. Soc., 2015, 137: 1746
11 Shen F R, Zhou H B, Hu FX, et al. Cone-spiral magnetic ordering dominated lattice distortion and giant negative thermal expansion in Fe-doped MnNiGe compounds [J]. Mater. Horizons, 2020, 7: 804
12 Azuma M, Chen W T, Seki H, et al. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer [J]. Nat. Commun., 2011, 2: 347
13 Long Y W, Hayashi N, Saito T, et al. Temperature-induced A-B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite [J]. Nature, 2009, 458: 60
14 Yu C Y, Lin K, Zhang Q H, et al. An isotropic zero thermal expansion alloy with super-high toughness [J]. Nat. Commun., 2024, 15: 2252
doi: 10.1038/s41467-024-46613-0 pmid: 38480744
15 Yu C Y, Lin K, Jiang S H, et al. Plastic and low-cost axial zero thermal expansion alloy by a natural dual-phase composite [J]. Nat. Commun., 2021, 12: 4701
doi: 10.1038/s41467-021-25036-1 pmid: 34349119
16 Yu C Y, Lin K, Chen X, et al. Superior zero thermal expansion dual-phase alloy via boron-migration mediated solid-state reaction [J]. Nat. Commun., 2023, 14: 3135
doi: 10.1038/s41467-023-38929-0 pmid: 37253768
17 Guillaume C É. Recherches sur les aciers au nickel [J]. J. Phys. Theor. Appl., 1898, 7: 262
18 Song Y Z, Sun Q, Yokoyama T, et al. Transforming thermal expansion from positive to negative: The case of cubic magnetic compounds of (Zr, Nb)Fe2 [J]. J. Phys. Chem. Lett., 2020, 11: 1954
19 Sun Y M, Cao Y L, Hu S X, et al. Interplanar ferromagnetism enhanced ultrawide zero thermal expansion in kagome cubic intermetallic (Zr, Nb)Fe2 [J]. J. Am. Chem. Soc., 2023, 145: 17096
20 Li W J, Lin K, Yan Y, et al. A seawater‐corrosion‐resistant and isotropic zero thermal expansion (Zr, Ta)(Fe, Co)2 alloy [J]. Adv. Mater., 2022, 34: 2109592
21 Cao Y L, Xu Y, Khmelevskyi S, et al. Interplanar magnetic orders and symmetry-tuned zero thermal expansion in kagomé metal (Zr,Ta)Fe2 [J]. Chem. Mater., 2023, 35: 9167
22 Song Y Z, Sun Q, Xu M, et al. Negative thermal expansion in (Sc,Ti)Fe2 induced by an unconventional magnetovolume effect [J]. Mater. Horizons, 2020, 7: 275
23 Jing-Ting Z, Yibole H, Narsu B, et al. Structural and magnetic properties of Sc1 - x Nb x Fe2 intermetallics showing anomalous zero thermal expansion [J]. Intermetallics, 2021, 136: 107252
24 Xu M, Song Y Z, Xu Y J, et al. High-temperature zero thermal expansion in HfFe2 + δ from added ferromagnetic paths [J]. Chem. Mater., 2022, 34: 9437
25 Dong X Y, Lin K, Yu C Y, et al. Zero thermal expansion in non-stoichiometric and single-phase (Hf, Nb) Fe2.5 alloy [J]. Scr. Mater., 2023, 229: 115388
26 Lin K, Zhang W B, Yu C Y, et al. Chemical heterogeneity modulated zero thermal expansion alloy over super-wide temperature range [J]. Cell Rep. Phys. Sci., 2023, 4: 101254
27 Xu J W, Wang Z, Huang H, et al. Significant zero thermal expansion via enhanced magnetoelastic coupling in kagome magnets [J]. Adv. Mater., 2023, 35: 2208635
28 Song Y Z, Chen J, Liu X Z, et al. Zero thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds [J]. J. Am. Chem. Soc., 2018, 140: 602
29 Hu J Y, Lin K, Cao Y L, et al. Adjustable magnetic phase transition inducing unusual zero thermal expansion in cubic RCo2-based intermetallic compounds (R = rare earth) [J]. Inorg. Chem., 2019, 58: 5401
30 Hao J Z, Shen F R, Hu F X, et al. Realization of ultra-low thermal expansion over a broad temperature interval in Gd x (Dy0.5Ho0.5)1 - x -Co2 compounds [J]. Scr. Mater., 2020, 185: 181
31 Li S P, Huang R J, Zhao Y Q, et al. Zero thermal expansion achieved by an electrolytic hydriding method in La(Fe,Si)13 compounds [J]. Adv. Funct. Mater., 2017, 27: 1604195
32 Li W, Huang R J, Wang W, et al. Abnormal thermal expansion properties of cubic NaZn13-type La(Fe, Al)13 compounds [J]. Phys. Chem. Chem. Phys., 2015, 17: 5556
33 Wang W, Huang R J, Li W, et al. Zero thermal expansion in NaZn13-type La(Fe,Si)13 compounds [J]. Phys. Chem. Chem. Phys., 2015, 17: 2352
doi: 10.1039/c4cp04672b pmid: 25503989
34 Cao Y L, Lin K, Khmelevskyi S, et al. Ultrawide temperature range super-Invar behavior of R2(Fe,Co)17 materials (R = rare earth) [J]. Phys. Rev. Lett., 2021, 127: 055501
35 Dan S, Mukherjee S, Mazumdar C, et al. Zero thermal expansion with high Curie temperature in Ho2Fe16Cr alloy [J]. RSC Adv., 2016, 6: 94809
36 Qiao Y Q, Song Y Z, Xu M, et al. Controllable thermal expansion and magnetic structure in Er2(Fe, Co)14B intermetallic compounds [J]. Inorg. Chem. Front., 2019, 6: 3225
37 Shen F R, Kuang H, Hu F X, et al. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation [J]. APL Mater., 2017, 5: 106102
38 Li W J, Lin K, Cao Y L, et al. Strong coupling of magnetism and lattice induces near-zero thermal expansion over broad temperature windows in ErFe10V2 - x Mo x Compounds [J]. CCS Chem., 2021, 3: 1009
39 Yu C Y, Lin K, Cao Y L, et al. Two-dimensional zero thermal expansion in low-cost Mn x Fe5 - x Si3 alloys via integrating crystallographic texture and magneto-volume effect [J]. Sci. China Mater., 2022, 65: 1912
40 Ahadi A, Matsushita Y, Sawaguchi T, et al. Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy [J]. Acta Mater., 2017, 124: 79
41 Li Q, Deng Z Z, Onuki Y, et al. In-plane low thermal expansion of NiTi via controlled cross rolling [J]. Acta Mater., 2021, 204: 116506
42 Wang H L, Lai D K Z, Xu J P, et al. Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb [J]. Scr. Mater., 2021, 205: 114222
43 Pang X L, Song Y Z, Shi N K, et al. Design of zero thermal expansion and high thermal conductivity in machinable xLFCS/Cu metal matrix composites [J]. Composites, 2022, 238B: 109883
44 Liu J, Gong Y Y, Wang J W, et al. Realization of zero thermal expansion in La(Fe, Si)13-based system with high mechanical stability [J]. Mater. Des., 2018, 148: 71
45 Cui J, Sun Y, Shi K W, et al. Invar effect in the wide and higher temperature range by coherent coupling in Fe-based alloy [J]. Adv. Funct. Mater., 2024, 34: 2309431
46 Cen D Y, Wang B, Chu R X, et al. Design of (Hf,Ta)Fe2/Fe composite with zero thermal expansion covering room temperature [J]. Scr. Mater., 2020, 186: 331
47 Weiss R J. The origin of the ‘Invar’ effect [J]. Proc. Phys. Soc., 1963, 82: 281
48 Lohaus S H, Heine M, Guzman P, et al. A thermodynamic explanation of the Invar effect [J]. Nat. Phys., 2023, 19: 1642
49 Khmelevskyi S, Turek I, Mohn P. Large negative magnetic contribution to the thermal expansion in iron-platinum alloys: Quantitative theory of the Invar effect [J]. Phys. Rev. Lett., 2003, 91: 037201
50 Matsui M, Shimizu T, Yamada H, et al. Magnetic properties and thermal expansion of Fe-Pd Invar alloys [J]. J. Magn. Magn. Mater., 1980, 15-18: 1201
51 Rode V E, Finkelberg S A, Lyalin A I, et al. Invar anomalies of Fe-Cr alloys [J]. J. Magn. Magn. Mater., 1983, 31-34: 293
52 Nishihara Y, Yamaguchi Y. Magnetic properties of the (Sc1 - x Ti x)-Fe2 system having two magnetic states with different degrees of localization [J]. J. Phys. Soc. Jpn., 1986, 55: 920
53 Li L F, Tong P, Zou Y M, et al. Good comprehensive performance of Laves phase Hf1 - x Ta x Fe2 as negative thermal expansion materials [J]. Acta Mater., 2018, 161: 258
54 Qiao Y Q, Song Y Z, Lin K, et al. Negative thermal expansion in (Hf, Ti)Fe2 induced by the ferromagnetic and antiferromagnetic phase coexistence [J]. Inorg. Chem., 2019, 58: 5380
55 Song Y Z, Chen J, Liu X Z, et al. Structure, magnetism, and tunable negative thermal expansion in (Hf,Nb)Fe2 alloys [J]. Chem. Mater., 2017, 29: 7078
56 Shiga M, Nakamura Y. Magnetovolume effects and Invar characters of (Zr1 - x Nb x)Fe2 [J]. J. Phys. Soc. Jpn., 1979, 47: 1446
57 Muraoka Y, Okuda H, Shiga M, et al. Magnetovolume effects in Gd x Y1 - x Co2 [J]. J. Phys. Soc. Jpn., 1984, 53: 331
58 Gratz E, Markosyan A S. Physical properties of RCo2 Laves phases [J]. J. Phys., 2001, 13: R385
59 von Ranke P J, de Oliveira N A. On the nature of the magnetic phase transition of the HoCo2 intermetallic [J]. J. Appl. Phys., 1998, 83: 6967
60 Morrison K, Dupas A, Mudryk Y, et al. Identifying the critical point of the weakly first-order itinerant magnet DyCo2 with complementary magnetization and calorimetric measurements [J]. Phys. Rev., 2013, 87B: 134421
61 Lizárraga R. Structural and magnetic properties of the Gd-based bulk metallic glasses GdFe2, GdCo2, and GdNi2 from first principles [J]. Phys. Rev., 2016, 94B: 174201
62 Huang R J, Liu Y Y, Fan W, et al. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds [J]. J. Am. Chem. Soc., 2013, 135: 11469
63 Song Y Z, Huang R J, Liu Y, et al. Magnetic-field-induced strong negative thermal expansion in La(Fe, Al)13 [J]. Chem. Mater., 2020, 32: 7535
64 Shen B G, Hu F X, Dong Q Y, et al. Magnetic properties and magnetocaloric effects in NaZn13-type La(Fe, Al)13-based compounds [J]. Chin. Phys., 2013, 22B: 017502
65 Long F X, Song Y Z, Chen J. La(Fe, Si/Al)13-based materials with exceptional magnetic functionalities: A review [J]. Microstructures, 2024, 4: 2024011
66 Cao Y L, Zhou H W, Khmelevskyi S, et al. Pressure-modulated magnetism and negative thermal expansion in the Ho2Fe17 intermetallic compound [J]. Chem. Mater., 2023, 35: 3249
67 Givord D, Lemaire R. Magnetic transition and anomalous thermal expansion in R2Fe17 compounds [J]. IEEE Trans. Magn., 1974, 10: 109
68 Cao Y L, Lin K, Liu Z N, et al. Zero thermal expansion and its mechanism of Ho2Fe11Al6 intermetallic compounds at low temperature [J]. J. Chin. Soc. Rare Earths, 2020, 38: 440
68 曹宜力, 林 鲲, 刘占宁 等. Ho2Fe11Al6金属间化合物的低温零热膨胀及其机制 [J]. 中国稀土学报, 2020, 38: 440
69 Buschow K H J, Grössinger R. Spontaneous volume magnetostriction in R2Fe14B compounds [J]. J. Less Common Met., 1987, 135: 39
70 Cheng B P, Yang Y C, Fu S C, et al. Thermal expansion anomalies of R2(Fe1 - x M x)14B [J]. J. Appl. Phys., 1987, 61: 3586
71 Loewenhaupt M, Prager M, Murani A P, et al. Inelastic neutron scattering on RE2Fe14B (RE = Y, Ce, Nd, Dy and Er) [J]. J. Magn. Magn. Mater., 1988, 76: 408
72 Yang S, Ma S C, Liu K, et al. Controllable negative thermal expansion by mechanical pulverizing in hexagonal Mn0.965Co1.035Ge compounds [J]. Inorg. Chem., 2018, 57: 14199
73 Ren Q Y, Hutchison W, Wang J L, et al. Negative thermal expansion of Ni-doped MnCoGe at room-temperature magnetic tuning [J]. ACS Appl. Mater. Interfaces, 2019, 11: 17531
74 Liu Y, Qiao K M, Zuo S L, et al. Negative thermal expansion and magnetocaloric effect in Mn-Co-Ge-In thin films [J]. Appl. Phys. Lett., 2018, 112: 012401
75 Liu E K, Wang W H, Feng L, et al. Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets [J]. Nat. Commun., 2012, 3: 873
doi: 10.1038/ncomms1868 pmid: 22643900
76 Caron L, Trung N T, Brück E, et al. Pressure-tuned magnetocaloric effect in Mn0.93Cr0.07CoGe [J]. Phys. Rev., 2011, 84B: 020414
77 Wu R R, Bao L F, Hu F X, et al. Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature [J]. Sci. Rep., 2015, 5: 18027
78 Sun X M, Cong D Y, Ren Y, et al. Giant negative thermal expansion in Fe-Mn-Ga magnetic shape memory alloys [J]. Appl. Phys. Lett., 2018, 113: 041903
79 Coates C S, Goodwin A L. How to quantify isotropic negative thermal expansion: Magnitude, range, or both? [J]. Mater. Horizons, 2019, 6: 211
80 Xu J H, Liu X M, Xia Y H, et al. Magnetic properties and magnetocaloric effect of (Mn1 - x Fe x)5Sn3 (x = 0-0.5) compounds [J]. J. Appl. Phys., 2013, 113: 17A921
81 Sürgers C, Kittler W, Wolf T, et al. Anomalous Hall effect in the noncollinear antiferromagnet Mn5Si3 [J]. AIP Adv., 2016, 6: 055604
82 Kainuma R, Wang J J, Omori T, et al. Invar-type effect induced by cold-rolling deformation in shape memory alloys [J]. Appl. Phys. Lett., 2002, 80: 4348
83 Nakai M, Niinomi M, Akahori T, et al. Anomalous thermal expansion of cold-rolled Ti-Nb-Ta-Zr alloy [J]. Mater. Trans., 2009, 50: 423
84 Saito T, Furuta T, Hwang J H, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism [J]. Science, 2003, 300: 464
pmid: 12702870
85 Kim H Y, Wei L S, Kobayashi S, et al. Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti-23Nb-2Zr-0.7Ta-1.2O alloy [J]. Acta Mater., 2013, 61: 4874
86 Wei L S, Kim H Y, Miyazaki S. Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti-Nb-Zr-Ta-O alloys [J]. Acta Mater., 2015, 100: 313
87 Monroe J A, Gehring D, Karaman I, et al. Tailored thermal expansion alloys [J]. Acta Mater., 2016, 102: 333
88 Bönisch M, Panigrahi A, Stoica M, et al. Giant thermal expansion and α-precipitation pathways in Ti-alloys [J]. Nat. Commun., 2017, 8: 1429
89 Demakov S, Semkina I, Stepanov S I. Abnormal behavior of lattice spacing of titanium orthorhombic martensite [J]. Mater. Sci. Forum, 2017, 907: 14
90 Rao Z Y, Tung P Y, Xie R W, et al. Machine learning-enabled high-entropy alloy discovery [J]. Science, 2022, 378: 78
doi: 10.1126/science.abo4940 pmid: 36201584
91 Zhao Y Q, Huang R J, Shan Y, et al. Low-temperature abnormal thermal expansion property of Mn doped cubic NaZn13-type La(Fe, Al)13 compounds [J]. J. Phys., 2017, 897: 012005
92 Sun B H, Lu W J, Gault B, et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels [J]. Nat. Mater., 2021, 20: 1629
doi: 10.1038/s41563-021-01050-y pmid: 34239084
93 Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
94 Liu Y, Li J, Qian Y, et al. Isotropic negative thermal expansion in the multiple-phase La-Fe-Co-Si-Cu alloys with enhanced strength and ductility [J]. Acta Mater., 2024, 275: 120058
95 Kakeshita T, Takeuchi T, Fukuda T, et al. Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation [J]. Appl. Phys. Lett., 2000, 77: 1502
96 Li Q, Ren Y, Zhang Q H, et al. Chemical order-disorder nanodomains in Fe3Pt bulk alloy [J]. Natl. Sci. Rev., 2022, 9: nwac053
97 Rechenberg H R, Morellon L, Algarabel P A, et al. Magnetic moment at highly frustrated sites of antiferromagnetic Laves phase structures [J]. Phys. Rev., 2005, 71B: 104412
98 Diop L V B, Isnard O, Suard E, et al. Neutron diffraction study of the itinerant-electron metamagnetic Hf0.825Ta0.175Fe2 compound [J]. Solid State Commun., 2016, 229: 16
[1] 张可敏; 杨大智; 邹建新; 董闯 . 316L不锈钢强流脉冲电子束表面改性研究 Part I 表面选择净化及机理[J]. 金属学报, 2007, 42(1): 64-70 .
[2] 张可敏; 杨大智; 邹建新; 董闯 . 316L不锈钢强流脉冲电子束表面改性研究 Part II 在模拟体液中的腐蚀行为[J]. 金属学报, 2007, 42(1): 71-76 .
[3] 张进修; 龚康 . 结晶状态对铜内耗频率谱的影响[J]. 金属学报, 2003, 39(11): 1212-1214 .
[4] 陈骏; 许晓伟 . 立方氮化硼的热膨胀性[J]. 金属学报, 2003, 39(9): 952-954 .