金属学报, 2025, 61(3): 437-454 DOI: 10.11900/0412.1961.2024.00357

综述

可充电镁电池负极材料及界面化学的研究进展

文恬恬1,2, 岳继礼1,2, 熊方宇1,2, 袁媛1,2, 黄光胜,1,2, 王敬丰1,2, 潘复生1,2

1 重庆大学 材料科学与工程学院 重庆 400044

2 重庆大学 国家镁合金材料工程技术研究中心 重庆 400044

Research Progress on Anode Materials and Interfacial Chemistry for Rechargeable Magnesium Batteries

WEN Tiantian1,2, YUE Jili1,2, XIONG Fangyu1,2, YUAN Yuan1,2, HUANG Guangsheng,1,2, WANG Jingfeng1,2, PAN Fusheng1,2

1 School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China

通讯作者: 黄光胜,gshuang@cqu.edu.cn,主要从事镁电池关键材料与电池系统、镁合金的塑性机理与塑性加工技术研究

责任编辑: 肖素红

收稿日期: 2024-10-25   修回日期: 2024-12-10  

基金资助: 国家自然科学基金项目(U23A20555)
重庆市技术创新与应用发展重点项目(揭榜挂帅)(2024TIAD-KPX0003)

Corresponding authors: HUANG Guangsheng, professor, Tel:(023)65102821, E-mail:gshuang@cqu.edu.cn

Received: 2024-10-25   Revised: 2024-12-10  

Fund supported: National Natural Science Foundation of China(U23A20555)
Chongqing Technology Innovation and Application Development Project(2024TIAD-KPX0003)

作者简介 About authors

文恬恬,女,1995年生,博士

摘要

可充电镁电池凭借其优异的电化学性能、镁资源的丰富性以及Mg均匀沉积的特性,已成为极具潜力的下一代电池之一。然而,其负极材料存在界面钝化、体积膨胀以及不均匀Mg剥离/沉积等问题,成为制约镁电池商业化进程的主要瓶颈。尽管在探索新型负极材料体系与界面化学调控策略上已取得了较多进展,但开发具有高能量密度、高功率密度、优异稳定性及长循环寿命等优势的负极材料仍面临着许多挑战。本文系统地回顾了可充电镁电池负极材料及界面调控领域的最新研究进展,深入剖析了材料组分、微观结构以及表面/界面结构对电化学性能的影响及其内在作用机制,并对未来负极材料的开发设计及界面调控进行了展望。

关键词: 可充电镁电池; 负极材料; 负极-电解液界面; 调控策略

Abstract

Rechargeable magnesium batteries have emerged as highly promising alternatives in the field of ion batteries, owing to their excellent electrochemical performance, abundance of magnesium resources, and uniform deposition of magnesium. However, challenges such as interface passivation, volume expansion, and uneven stripping/plating of anode materials persist in impeding the commercialization process of rechargeable magnesium batteries. Despite significant progress in exploring novel anode materials and interfacial chemical regulation strategies, developing anode materials that combine high energy density, high power density, excellent stability, and extremely long cycle life continues to pose numerous challenges. This study comprehensively and systematically reviewed the latest research on anode materials and interface regulations for rechargeable magnesium batteries. The influence of material composition, microstructure, and surface/interface structure on electrochemical properties and their underlying mechanisms were analyzed, along with the prospects for the future development and design of anode materials for magnesium batteries and interface regulation.

Keywords: rechargeable magnesium battery; anode material; anode-electrolyte interface; regulation strategy

PDF (4115KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

文恬恬, 岳继礼, 熊方宇, 袁媛, 黄光胜, 王敬丰, 潘复生. 可充电镁电池负极材料及界面化学的研究进展[J]. 金属学报, 2025, 61(3): 437-454 DOI:10.11900/0412.1961.2024.00357

WEN Tiantian, YUE Jili, XIONG Fangyu, YUAN Yuan, HUANG Guangsheng, WANG Jingfeng, PAN Fusheng. Research Progress on Anode Materials and Interfacial Chemistry for Rechargeable Magnesium Batteries[J]. Acta Metallurgica Sinica, 2025, 61(3): 437-454 DOI:10.11900/0412.1961.2024.00357

随着化石能源的日渐枯竭与环境污染问题的不断加剧,全球范围内正兴起环境保护与可持续发展的浪潮。在此背景下,为有效应对全球变暖及气候极端化挑战,我国明确提出了碳达峰碳中和的目标。大力发展可再生能源,推进能源结构的转型升级,被视为实现“双碳”目标的核心路径[1~7]。然而,可再生能源固有的不稳定性和间歇性特性,给电力系统的稳定运行带来了挑战,易引发电力波动与供需失衡,进而影响到电能的整体质量。鉴于此,加速提升清洁能源的高效转换与储存技术已成为当务之急,这对于促进能源结构的绿色转型及确保电力系统的稳定可靠运行具有深远意义。

电化学储能作为一种高效的能量储存方式,通过化学能与电能之间的相互转换,实现电能的存储与释放。在金属离子电池体系中,电荷的传递是通过离子在正负极间的移动、嵌入与脱出实现的,因此,选择合适的金属离子作为电荷载体,对于电化学储能电池技术的发展至关重要。在基于Li+、Na+、K+、Mg2+、Ca2+、Zn2+、Al3+等离子构建的多种可充电电池储能体系中,可充电镁电池展现出独特的优越性。特别是当Mg作为电池负极材料时,其优势尤为显著[8~11]。Mg的理论体积比容量高达3833 mA·h/cm3,约为Li (2062 mA·h/cm3)的2倍。在充、放电过程中,纯Mg负极不易形成枝晶,这使得镁电池具有更高的安全性。此外,我国是镁资源储量大国,原镁产量稳居世界第一,这一优势在地缘政治中具有重要的战略意义。随着全球对环保和可持续发展的重视,镁产业将迎来更加广阔的发展前景,可充电镁电池有望在未来的储能领域中发挥重要作用。

然而,可充电镁电池的开发与应用面临着较多的挑战。从负极的角度,Mg的还原电位(-2.37 V vs SHE (标准氢电极))较低,较高的反应活性使Mg与传统电解液反应形成钝化膜,阻碍了Mg2+的传导性和电化学反应的可逆性。此外,近年来的研究发现,在某些电解液体系或特定条件下,纯Mg负极也会形成类似“Mg枝晶”的不均匀沉积形貌,从而引发隔膜穿刺、Mg负极穿孔等问题,严重限制了负极的电化学性能。因此,分析并探索Mg负极失效的根本原因及解决办法对可充电镁电池的发展具有重要意义。目前,普遍认为Mg负极的钝化是由Mg与电解液中的离子、溶剂、微量水分及污染物等发生不稳定反应导致的,而Mg沉积/剥离的非均匀性则是诱发“Mg枝晶”形成的主要原因[12,13]。迄今为止,为了解决纯Mg负极的钝化问题,一方面通过设计非镁基负极材料,如基于IIIA、IVA、VA族元素构建的合金负极等,作为负极材料的可行选择之一;同时,通过设计三维亲镁结构,如石墨碳纳米衬底(graphitic carbon nanosubstrates,GC-NSs)、三维MoSe2、三维Mg3Bi2、无定形MgO包裹Zn骨架、碳布上垂直排列的氢氧化镍纳米片阵列(Ni(OH)2@CC)等,规避不均匀Mg沉积/剥离及穿孔问题[14~18]。这些研究都深入展现了负极材料及界面结构与成分设计的重要性。固体电解质界面(solid electrolyte interphase,SEI)作为负极材料与电解液之间的关键界面层,在离子传导、电极结构稳定及电池循环寿命方面扮演着举足轻重的角色。随着离子电池技术的飞速发展,SEI的研究已成为优化电池性能与确保电池安全可靠的核心焦点之一。因此,近年的研究重心也致力于探索负极/电解液界面化学性质以及人工SEI膜技术的开拓与创新。通过精准调控SEI膜的化学成分、微观组织及其形成过程,旨在构建出性能更为卓越的电池体系。这一领域的研究不仅要求对SEI的形成机制有深入的理解,更需要在材料设计、合成与表征技术等方面实现创新,以期推动离子电池技术迈向新的高度。

本文对可充电镁电池负极材料及界面调控领域进行了全面且深入的探讨,详细阐述了负极材料的优势与局限性、材料成分与结构设计思路,以及界面调控的核心技术与策略。通过对镁电池负极及界面研究领域的系统性梳理与归纳,本文探讨了纯Mg负极与合金负极在能量密度、循环稳定性等方面的显著优势及其局限性,同时分析了界面钝化、Mg沉积/剥离不均匀以及负极体积膨胀等关键问题的内在机制及解决方案。在此基础上,本文展望了未来的发展方向,着重指出开发新型负极材料、优化材料成分与结构以及跨学科融合等策略在推动镁电池负极材料及界面调控领域发展中的关键作用与深远影响。通过对这些研究的分析与讨论,深化对负极及界面问题的理解,总结出其中的内在逻辑,期望为镁电池领域的科学研究与实际应用提供理论支撑与实践指导。

1 负极材料概述

1.1Mg负极

纯Mg负极在镁电池中具有多个维度的显著优点。首先,纯Mg负极具有较高的理论比容量(体积比容量为3833 mA·h/cm3;质量比容量为2205 mA·h/g),这对于便携式电子设备、新能源汽车、电网侧储能等新兴市场的应用场景尤为重要;其次,镁资源储量丰富,价格相对低廉(价格成本仅为Li的1/40左右),为以纯Mg负极为核心的镁电池大规模商业化应用提供了坚实的基础;第三,在充、放电循环过程中,纯Mg负极展现出较高的安全性,能够有效避免其他金属负极常见的枝晶生长现象,因此特别适合对电池安全性和可靠性要求极高的应用领域;此外,Mg对环境的友好性符合当前全球对于绿色、可持续能源发展的迫切需求和发展理念,这体现在其生产过程无污染、可回收再利用的特性,以及镁储氢和镁电池等应用的广阔潜力等多个方面;最重要的是,我国是镁资源储量大国,原镁产量稳居世界第一(约占全球总产量的80%),这一显著优势在地缘政治格局中具有极其重要的战略意义。总之,纯Mg负极凭借其多方面的显著优势,正逐步展现出在电池负极材料领域的巨大潜力和广阔的发展前景,有望引领电池技术的创新与发展潮流。

然而,在将纯Mg负极在镁电池中的理论优势转化为实际应用的过程中,仍面临着一系列挑战与难题。首先,Mg与电解液的钝化问题不容忽视(图1a[19])。高活性的Mg对电解液组分极为敏感,易与其中的不相容离子、溶剂、微量H2O及杂质等发生严重的副反应,形成阻碍Mg2+迁移的钝化层。这不仅会引起较大的界面极化现象,还会限制Mg沉积/剥离过程的可逆性。此外,纯Mg负极较为活泼,在空气中极易被氧化,形成由MgO和Mg(OH)2等组成的氧化膜。这层氧化膜不仅阻碍了充、放电过程中Mg2+的迁移,还可能导致电池内阻增大。因此,如何有效地保护纯Mg负极,防止其在电解液中发生钝化以及在空气中被氧化,是当前亟待解决的问题之一。

图1

图1   纯Mg负极的困境:钝化问题[19];不均匀剥离/沉积问题[20,21];加工难题[22,24]

Fig.1   Dilemmas of Mg anode

(a) passivation of Mg anode[19] (b, c) uneven stripping/plating of Mg anode[20,21] (DLA—diffusion-limited aggregation) (d) machining problem of Mg anode[22,24] (RD—rolling direction)


其次,纯Mg负极的不均匀剥离/沉积现象亟待解决(图1bc[20,21])。在特定电流密度(如0.1~1 mA/cm2)下,纯Mg负极表面会发生不均匀的剥离行为,这不仅破坏了负极结构的完整性,还导致了后续Mg沉积的非均匀性,进而可能引发电池性能的波动和衰退;而在较高电流密度(> 10 mA/cm2)下,纯Mg负极表面会出现“Mg枝晶”的生长现象,这些高模量、尖锐的“Mg枝晶”不仅增加了隔膜刺穿的风险,还可能对电池的安全性和稳定性构成严重威胁。因此,纯Mg负极的不均匀剥离/沉积行为已成为镁电池领域亟待解决的重要难题,它不仅影响了电池的电化学性能,还是制约镁电池技术发展的关键因素之一。

此外,纯Mg负极在应用中还面临着成本控制方面的严峻挑战[19,22~24]。Mg具有hcp晶体结构,其特性决定了在室温条件下可启动的滑移系相对有限,这直接导致Mg的塑性较差,难以进行高效的塑性变形加工[19]。因此,在纯Mg负极的制备过程中,往往需要采用更为复杂和精细的加工工序来确保其质量和性能,这不仅增加了生产过程中的技术难度,还导致成品率显著降低,从而进一步推高了纯Mg负极的加工成本(图1d[22,24])。面对这一挑战,如何在确保纯Mg负极电池性能稳定且优异的前提下,有效地削减其制备成本,是推进镁电池产业化进程中一个亟需解决的关键问题。

1.2 合金负极

目前,纯Mg负极在镁电池领域的应用还存在一些难点。钝化和氧化问题限制了纯Mg负极的化学活性和反应效率,不均匀剥离/沉积问题则直接影响了电池的安全性和循环性能。而将镁资源转化为高品质、适用于镁电池的纯Mg负极,其生产、加工过程的复杂性无疑是镁电池商业化应用的一大阻碍。近年来,设计合金负极材料已成为解决纯Mg负极钝化问题的一大研究热点。基于IIIA、IVA、VA族元素构建的合金负极展现出良好的电解液相容性,能够实现高效且可逆的嵌镁/脱镁过程,同时能够与高电压、高容量过渡金属氧化物正极材料实现良好匹配,是当前镁电池技术领域的研究热点之一[25~34]

以Ga元素为基础的合金负极体系得到了广泛的研究与探索,该体系在提高电池能量密度、改善电化学性能和负极自愈性等方面,展现出了独特的优势和应用潜力。Wang等[25]发现,Mg-Ga合金负极的固-液相变机制对于提升其电化学性能至关重要。如图2a[25]所示,Mg2Ga5负极的电化学性能具有明显的温度敏感性:在40 ℃下,Mg2Ga5负极的比容量超过200 mA·h/g,库仑效率(Coulombic efficiency)超过95%,且循环寿命超过1000 cyc;在20 ℃下,Mg2Ga5负极难以触发固-液相变过程,导致其在低温下无法进行有效循环(Ga的熔点为29.8 ℃)。2024年,Wang等[35]报道了一种能够在室温下进行可逆液-固相变的液态共晶Ga-In负极(EGa-In,熔点为15 ℃),在25 ℃下,EGa-In在1 C下的比容量为225 mA·h/g,循环2000 cyc后具有91%的容量保持率。近日,本课题组[36]报道了一种还原氧化石墨烯(rGO)限域的Ga负极(Ga@rGO),该材料展现出良好的自愈性能、较高的倍率性能以及较长的循环寿命。如图2b[36]所示,Ga@rGO为rGO包裹Ga的核壳结构,这种结构能够有效防止Ga颗粒的团聚,并减少Ga与电解液的反应以及对集流体的腐蚀。在0.5 A/g电流密度下,Ga@rGO的比容量为150 mA·h/g,并在室温下稳定循环1200 cyc。

图2

图2   Mg-Ga合金负极的代表性研究:Mg-Ga体系的固-液相变机制及长循环稳定性[25];还原氧化石墨烯(rGO)限域的Ga负极(Ga@rGO)充电前后的形貌[36]

Fig.2   Representative researches of Mg-Ga alloy anodes

(a) solid-liquid phase transformation and long cycle-life of Mg-Ga system[25]

(b) morphologies of Ga confined by reduced graphene oxide (Ga@rGO) before and after charging process[36]


此外,在镁电池领域中,以Sn为主的IVA族合金负极和以Bi为主的VA族合金负极同样展现出巨大的研究价值和应用前景[27~29,31,34]。Sn存在立方结构(α-Sn)和四方结构(β-Sn)。其中,β-Sn中的Mg2+扩散能垒(0.07 eV)显著低于α-Sn (0.40 eV),但其可逆容量(约330 mA·h/g)远低于最大值(约 900 mA·h/g);虽然α-Sn表面及内部的Mg2+扩散能垒较大,但其理论体积能量密度较高[37,38]。Nguyen等[39]采用脉冲激光沉积技术制备了厚度为49 nm的Sn薄膜,大幅提升了其Mg2+扩散能力,Mg2+扩散速率为2.9 × 10-11 cm2/s。对于铋基负极而言,它具有2大明显优势:一方面,其具备较高的理论体积容量(3783 mA·h/cm3),与Mg接近;另一方面,其具有快速的Mg2+迁移动力学特性,铋基负极中Mg2+的扩散速率约为5.9 × 10-14 cm2/s,Mg3Bi2合金负极的Mg2+扩散速率约为3.9 × 10-10 cm2/s。这些特性进一步提升了铋基负极在镁电池负极领域的应用潜力[40]

合金负极在镁电池领域的应用同样面临诸多挑战,主要包括Mg2+扩散速率慢、负极体积膨胀显著以及容量保持率低等问题。具有较高缺陷形成能的合金负极,其Mg2+扩散性能较差,阻碍了嵌镁/脱镁反应的顺利进行。在电池循环过程中,合金负极会因嵌镁/脱镁过程而发生剧烈的结构变化,引发显著的体积膨胀现象。这不仅会导致合金负极中内应力不断积累,使其容易粉化和脱落,还会严重影响电池的容量保持率和循环稳定性。因此,解决合金负极的Mg2+扩散速率低和体积膨胀显著等问题,对于提升镁电池的整体性能和保障其安全性具有至关重要的作用。

2 界面调控研究进展

2.1 存在的问题

2.1.1 界面钝化

界面钝化是一个复杂且关键的过程,对电池极化、能量效率、循环寿命等具有重要影响。目前,已有部分研究对界面钝化的机制进行了深入探索,如图3[41~43]所示。一般认为,纯Mg负极与电解液中的多种组分(如离子、溶剂、微量水分以及污染物等)之间发生的复杂反应,是导致界面钝化的关键所在。Mg2+因其极强的配位能力,在电解液中极易与溶剂分子/离子发生相互作用,这是界面形成钝化膜的主要原因之一。例如,Rajput等[41]通过计算三氟甲磺酰亚胺镁(Mg(TFSI)2)电解液中Mg2+的配位构型及其解离能,揭示了[Mg+-TFSI-]分解成MgO、MgS、MgF2、—SO x 及—CF3等钝化物质的具体过程(图3a[41])。此外,配位溶剂分子的不稳定性也是导致界面钝化的重要原因。通常,游离的溶剂分子具有良好的稳定性,但一旦这些溶剂分子与Mg2+发生配位,其稳定性便会下降(图3b[42])。因此,研发弱配位策略尤为关键,这不仅是减轻离子分解、增强纯Mg负极与电解液界面相容性的有效手段,也是推动镁电池技术发展的关键。此外,电解液中的污染物、微量水分及非活性物质等杂质,会进一步加剧纯Mg负极界面的钝化现象。特别是微量水分的存在,由于其难以通过常规方法彻底去除,不仅会对实验结果的准确性造成干扰,还可能掩盖纯Mg负极界面问题的本质(图3c[43])。

图3

图3   界面钝化:TFSI-、[Mg+-TFSI-]及[Mg2+-TFSI-]的解离能[41];配位溶剂分子的不稳定性[42];电解液溶剂化结构的结合能和电荷态[43]

Fig.3   Passivation mechanisms

(a) bond dissociation energy (BDE) of TFSI-, [Mg+-TFSI-], and [Mg2+-TFSI-][41]

(b) instability of the coordinated solvents[42] (G1—monoglyme, G2—diglyme, G3—triglyme, DMS—dimethyl sulfone, TMS—tetramethylene sulfone, ACN—acetonitrile, Ered—reduction potentials)

(c) binding energy and charge state of solvated structure in electrolytes[43]


针对界面钝化问题,目前已有众多非钝化型镁电解液的研究与开发,这些研究旨在开发能够有效避免或减轻界面钝化现象,从而提高镁电池性能的新型电解液。关于非钝化型电解液的研究已有较多报道,涵盖了电解液成分的优化、溶剂体系的选择、添加剂的引入以及离子盐结构的调控等多个方面,力求全面提升镁电解液的电化学性能[44~50]。例如,与TFSI-、SO3CF3-和PF6-等阴离子相比,以Al/B为中心的阴离子通常与纯Mg负极具有较好的相容性[51]。Mg(BH4)2是一种较为有效的镁电解液溶质,富电子的BH4-与Mg2+具有较强的配位作用,可参与Mg2+与TFSI-形成的配合物团簇([Mg-(TFSI)+(diglyme)2])的第一溶剂化壳层;BH4-还可以优先吸附在纯Mg负极表面,形成静电屏蔽效应,减轻游离的TFSI-分解和其他副反应,从而有效地提升纯Mg负极和电解液的相容性[52,53]。此外,一系列硼簇阴离子结构,如碳硼烷(CB11H12-)、有机硼酸镁盐、烷氧硼酸镁盐、烷氧硼酸镁盐等,均有望作为镁电解液中溶质的潜在选择,展现出广阔的应用潜力[48~50]。例如,通过“接枝反应”设计不对称的弱配位硼中心阴离子([B(TFE)3OTf]-),可显著改善界面化学性质,诱导形成由B x O y 、MgF2、MgO、MgS等组分复合的SEI结构,进而改善纯Mg负极在电解液中的电化学行为[47]。此外,还可以通过引入多功能氟化硼酸酯(B(Otfe)3)作为共溶剂,调控电解液的溶剂化结构,形成了[Mg(DME)B(Otfe)3]2+,降低了去溶剂化能垒,减少了MgO和Mg(OH)2钝化层的形成,从而形成了更稳定的含B—F/B—O和MgF2的SEI膜[54]

总之,电解液溶剂化结构和组分是影响负极-电解液界面性能的重要因素之一,对界面离子扩散过程及Mg沉积行为具有深远影响。近年来,研究者通过优化电解液配方、设计溶剂化结构以及开发新型离子盐结构等手段对该领域进行了研究,以期解决传统镁电解液面临的界面钝化、离子电导率低、稳定性不足及成本高昂等难题。这些研究不仅局限于电解液成分的调控,更深入到新型离子盐的研发、界面形成机理的剖析以及优势组分的探索等多个层面。据现有报道,MgO和Mg(OH)2作为典型的钝化物质,其形成虽难以完全避免,但研究者正积极寻求减少其负面影响的方法;MgF2、MgS和MgCO3等组分的作用机制尚存争议,尽管它们可能牺牲了部分离子扩散性能,却在稳定SEI结构方面展现出潜力;MgCl2、MgBr2、MgI2,以及含有P、B、N等元素的组分被证实能有效促进离子扩散,或将成为提升电解液性能的关键因素。因此,如何在镁电解液中引入并设计优势组分,以诱导形成兼具高离子电导率和卓越稳定性的SEI结构,仍是当前界面研究中亟待探索的领域。此外,对于界面钝化的根源,仍需更系统、深入的研究以揭示其失效的本质原因。唯有透彻理解这些基础科学问题,才能制定出更为精准有效的抑制界面钝化的策略,为镁电池的商业化进程铺设更为坚实的基石。

2.1.2 不均匀Mg沉积/剥离

随着对纯Mg负极失效机制认知的不断深化,其在实际应用过程中所呈现的复杂性和挑战性愈发显著。起初,纯Mg负极因“无枝晶”特性而广受青睐,而近年来逐渐发现其枝晶生长行为,为这一领域带来了新的挑战与思考。2019年,Davidson等[12]在0.5 mol/L CH3MgCl/四氢呋喃(THF)电解液中观察到了低电流密度(0.921 mA/cm2)下的“Mg枝晶”生长行为,并据此构建了相图模型,以深入解析不同条件下Mg沉积形貌的变化。结果表明,Mg沉积形貌并非由单一因素所决定,而是由电流密度、电解液浓度、溶剂化结构和Mg剥离形貌等多重因素相互交织、共同作用的复杂结果。尽管纯Mg本身相较于其他金属具有较低的枝晶生长倾向,但在实际的电池充、放电循环过程中,这些因素的共同作用仍会导致Mg沉积/剥离行为的不均匀性,进而成为制约电池性能提升的关键瓶颈之一。目前,普遍认可的金属沉积理论有2种,分别是扩散限制理论和成核理论。扩散限制理论着重强调电化学反应速率和扩散速率在Mg沉积形貌形成过程中的关键作用,而成核理论则从电流密度和过电位的角度阐释了镁沉积形貌的演变过程。

近年,崔光磊课题组[55]在金属沉积理论领域取得了突破性进展,他们提出了连接扩散限制理论和成核理论2种模型的边界条件,并运用“扩散控制缓冲区”的概念,深入解析了在不同电流密度和电沉积时间下,多种理论模型如何通过协同作用共同调控Mg的沉积形貌(图4a~c[55])。这一概念打破了以往单一理论模型的局限性,揭示了Mg沉积过程中多因素、多尺度的复杂相互作用机制。2022年,该课题组的研究[21]引起业界关注,他们揭示了镁电池在充、放电过程中一个不容忽视的现象:即便在理论上被视为安全的电流密度范围内进行电池的充、放电操作,纯Mg负极仍可能发生失效或导致电池短路现象。具体而言,Mg自加速凹坑生长行为成为纯Mg负极循环过程中的一个关键问题。在0.3~1 mA/cm2的电流密度范围内,含Cl电解液中的纯Mg负极表现出明显的不均匀Mg剥离行为,具有自加速凹坑生长的特点。这些凹坑会逐渐扩大,严重损害纯Mg负极的完整性和后续Mg沉积的均匀性,最终导致纯Mg负极失效或电池短路,从而严重限制了电池的性能和使用寿命。值得注意的是,只有当电流密度在< 0.01 mA/cm2或> 5 mA/cm2的范围时,这种不均匀Mg剥离现象才有所缓解。此外,研究[18,55]还发现,在玻璃纤维、聚丙烯等多孔隔膜中,Mg沉积物易于在隔膜内部积累,从而引起软短路现象(图4d[55])。这种短路机制与“Mg枝晶”生长无关,而与工作时间和隔膜厚度密切相关。然而,其根本原因尚待进一步探究。这些发现无疑对镁电池的实际应用提出了更高的技术挑战和场景限制,也进一步凸显了优化电池工况管理、提升Mg沉积/剥离均匀性的重要性。

图4

图4   不均匀Mg沉积/剥离[55]:Mg沉积过程示意图及扩散限制理论和成核理论的标准参数(以全苯基络合物(APC)电解液为例);扩散控制缓冲区示意图;10 mA/cm2电流密度下Mg在APC电解液中的沉积形貌;5 mA/cm2电流密度下Mg在玻璃纤维隔膜中的沉积行为

Fig.4   Uneven Mg plating/stripping mechanism[55]

(a) schematic of Mg electroplating progress and the standard parameters to guide the diffusion limited theory and the nucleation theory (take the all phenyl complex (APC) electrolyte as an example) (rcrit—critical radius, ηn—overpotential, γ—surface energy, F—Faraday's constant, Vm—molar volume, τSand—Sand's time, iL—limited current, C0—salt concentration in bulk electrolyte, Dambp—ambipolar diffusion coefficient, n—electron transfer number, A—electrode area, L—thickness, μa—anion transference number, μc—cationic transference number, Dc—self-diffusion coefficient of individual cation, Da—self-diffusion coefficient of individual anion, t+—cationic transference number. THF—tetrahydrofuran)

(b) diagram of diffusion-control buffer zone

(c) cross sectional SEM image and schematic of Mg deposit at 10 mA/cm2 in APC electrolyte

(d) Mg plating in glass fiber separator at 5 mA/cm2


总之,研究Mg沉积/剥离机制对于提升纯Mg负极的电化学性能具有至关重要的意义。为了推动高性能镁电池的商业化应用进程,亟需对Mg沉积/剥离过程中的多个核心环节与关键现象进行更为详尽的研究。首要任务在于揭示不均匀Mg沉积/剥离的内在机制,同时掌握有效调控Mg沉积与剥离均匀性的策略。这2者相辅相成,共同构成了解决纯Mg负极实际应用中失效问题的核心技术,也是推动镁电池技术迈向新高度的关键。Mg沉积/剥离过程是一个由多重因素控制的复杂过程,涉及电化学反应动力学、离子扩散动力学以及Mg自扩散动力学等多个层面。此外,该过程还受到电解液中Mg2+的溶剂化结构、施加的电流密度以及电沉积持续时间等多重因素的影响。为了全面而深入地理解这一过程,必须综合考量并融合多种理论模型,同时引入如“扩散控制缓冲区”等创新性的概念,以期揭示各影响因素之间的相互作用与协同效应。通过持续不断地优化这些内在机制,并将理论研究成果与实践应用紧密结合,将实现对Mg沉积/剥离过程更为精准的控制。这不仅将为镁电池技术的广泛应用提供坚实的支撑,也将为相关技术的持续进步与发展注入强大的动力。

2.1.3 体积膨胀

相较于纯Mg负极,基于IIIA、IVA、VA族元素构建的合金负极在缓解钝化问题上独具优势,高效且可逆地进行嵌镁/脱镁过程,然而,体积膨胀仍是其在实际应用中面临的关键挑战。体积膨胀是合金负极在嵌镁/脱镁过程中因晶格结构变化而引发的结果。随着充、放电过程的进行,合金负极会发生周期性体积变化,这种反复的体积波动会在负极积累内应力,导致负极体积膨胀。体积膨胀不仅会引起负极结构的严重破坏,还可能导致活性材料从集流体上剥落,进而对电池的电化学性能产生严重影响。具体表现为电池容量逐渐衰减、内阻不断增大以及循环寿命显著缩短,这些问题都极大地限制了镁电池的实际应用与市场推广。因此,如何有效缓解合金负极的体积膨胀,成为当前镁电池合金负极材料领域研究中的一个重要方向。

为了克服这一技术瓶颈,科研人员正致力于开发新型合金负极材料,优化其成分与结构,以期在保持高效嵌镁/脱镁性能的同时,有效控制体积膨胀,提升电池的循环稳定性和使用寿命。元素掺杂及包覆、纳米结构设计及多相合金化等手段在提升合金负极的电化学性能方面极具优势。元素掺杂的核心在于通过引入其他元素来改变原有材料的晶体结构和电子性质,从而优化Mg2+的插入、迁移及存储过程。例如,Al掺杂Si负极能够显著降低Si晶体的缺陷形成能,为Mg2+的嵌入和迁移创造有利条件。这是由于Al与Si的原子尺寸和电荷存在差异,能够在Si晶体中形成置换或间隙位,从而调节晶格常数和能带结构[56]。这不仅能够降低Mg2+的嵌入能垒,还有助于提高负极材料的能量储存效率和循环稳定性。类似地,Ga掺杂能够调节Ge晶体的能带结构和电荷分布,增强Mg2+迁移动力学,从而进一步提升负极的电化学性能[56]。值得注意的是,元素掺杂虽然能够显著提升合金负极的电化学性能,但也在晶体结构调整、材料团聚粉化及负极稳定性等方面存在潜在问题和挑战。合适的元素掺杂种类和浓度选择,是达成合金负极性能与稳定性之间最佳平衡的关键。此外,通过在合金负极材料表面构建一层或多层包覆层,能够有效地调控其表层的物理和化学特性。这一方法不仅显著减少了合金负极的团聚现象,还极大地提升了其综合性能。例如,Mg2Sn/石墨复合负极、石墨/黑磷复合负极以及Mg/黑磷复合负极(Mg@BP,图5a[57])等复合负极材料,均通过复合包覆的手段提升了电化学性能[31,33,57,58]

图5

图5   Mg/黑磷复合负极(Mg@BP)[57]、Bi纳米管(Bi-NTs)纳米负极[34]、Bi-Sn多相合金负极[59]和InSb-10%C负极[64]的体积膨胀

Fig.5   Volume expansions

(a) Mg@BP[57] (Mg/black phosphorous composite anode)

(b) Bi-NTs nano structure anode[34] (NTs—nanotubes)

(c) Bi-Sn multiphase alloy anode[59] (d) InSb-10%C anode[64]


纳米结构设计的核心在于设计多维纳米结构,以增大合金负极的比表面积、提供更多活性位点、缩短离子扩散路径以缓解体积膨胀等,从而促进Mg2+的嵌入和迁移过程,提升负极的电化学性能。例如,通过机械剥离技术,从块状黑磷中成功提取出的单层黑磷,其表面分布着较多有利吸附位点,并拥有快速的离子扩散通道,这一特性极大地促进了Mg2+沿单层黑磷的锯齿方向快速扩散,其扩散能垒仅0.08 eV[30]。此外,通过原位去合金化技术,将Mg2Sn块体转化为纳米多孔Sn,随后通过氧化脉冲激活处理,进一步优化得到了高性能的纳米多孔Sn负极材料[27]。再者,通过水热反应法,制备的Bi纳米管(Bi-NTs)不仅展现了优异的倍率性能和循环性能,并且由于Bi-NTs能够保持负极结构完整性,其电化学性能远远优于微米铋基负极(图5b[34])。值得一提的是,纳米铋基负极还对基于Mg(TFSI)2或Mg(ClO4)2等多种钝化型电解液展现出良好的兼容性,进一步扩宽了其应用潜力。然而,纳米结构的制备过程通常较为复杂且成本较高;同时,其较高的比表面积也可能引起较多不良反应,从而限制电池的电化学性能和安全性。因此,在纳米结构设计时,需要综合考虑材料的性能、制备成本以及实际应用需求,以实现最佳的电化学性能和经济性。

多相合金化的核心在于耦合2种或多种元素种类的优势,以此开发出单相合金负极无法媲美的优异性能。得益于各组分合金电位的差异,多种活性组分能够交替作为缓冲基质,从而有效地缓解了充、放电过程中产生的显著体积变化,进而实现了负极性能的提升与优化。当前,以Sn和Bi为基础的多相合金负极在镁电池负极材料领域已引起了广泛的关注[59~62]。例如,纳米多孔Bi-Sn合金负极(图5c[59])及类共晶双相Bi-Sn薄膜,通过设计交织的Bi/Sn相和分级多孔结构,实现了合金负极在电化学性能上的显著提升[59,61]。2022年,本课题组[62]通过机械合金化法制备了Bi-Sb-Sn合金负极,通过多步相变过程显著改善了离子迁移动力学和负极的循环稳定性。此外,本课题组[63,64]还成功研发出性能优异的Bi-Sn@SnO2负极和InSb-10%C负极。这些成果强调了相分离、缺陷和Mg2+嵌入/脱出反应之间的协同作用对缓解负极体积膨胀的有益效果;探讨了不同碳源(乙炔黑、rGO和碳纳米管(CNTs))的复合负极(InSb-C、InSb-rGO和InSb-CNTs)对负极性能的影响(图5d[64])。然而,多相合金负极通常具有复杂的相组分、形貌、分布以及相界面,如何精确控制这些微观结构参数是多相合金化技术面临的一大挑战。

2.2 解决的方案

2.2.1 理论模拟研究

密度泛函理论(density functional theory,DFT)是一种强大的理论工具,广泛应用于计算并探索材料的内在性质,在离子电池负极-电解液界面的研究中也发挥着至关重要的作用。DFT不仅能够揭示离子及溶剂分子在界面上的吸附与扩散行为,还为揭示Mg沉积/剥离行为及界面离子迁移动力学等内在机制提供了坚实的理论基础。对于吸附过程,Mg2+在Mg、集流体或亲镁基底上的吸附能是一个关键因素,它直接影响了Mg沉积过程的形核数量以及所需的过电位。例如Sn、Sb、Bi、In、Au及其合金相等对Mg2+具有较强的吸附能力,这种特性有利于Mg沉积过程,是界面性质的一个有利因素。如图6a[65]所示,利用DFT可以精确地计算出Mg原子在不同材料/晶面上的吸附能。此外,溶剂分子/阴离子的吸附能和最低未占据分子轨道(LUMO)能级等也对界面的分解反应和SEI的结构与组成具有显著影响。例如,SO3CF3-和TFSI-的吸附能通常高于THF、乙二醇二甲醚(DME)、二乙二醇二甲醚(G2)和2-甲氧基乙胺(MOEA)等溶剂分子,这导致阴离子优先于溶剂发生分解,从而诱导形成具有梯度分布的有机-无机复合SEI结构(图6b[51])。因此,溶剂、阴离子以及溶剂化离子在界面上的吸附能和LUMO能级可以作为描述和指导SEI形成过程的重要参数。

图6

图6   吸附能和扩散能的理论计算:Mg原子在不同Mg和MgIn晶面上的吸附能[65];四氢呋喃(THF)、乙二醇二甲醚(DME)、二乙二醇二甲醚(G2)和2-甲氧基乙胺(MOEA)分子在Mg(0001)上的吸附模型和吸附能[51];Mg在Mg3Sb2和MgCl2中的迁移能垒[66];Mg2+在各种无机镁化合物中的扩散能垒[67]

Fig.6   Theoretical calculation of adsorption energy and diffusion energy

(a) calculated adsorption energies of Mg atoms onto different Mg and MgIn crystal facets[65]

(b) adsorption models and energies of THF, glyme (DME), G2, and 2-methoxyethylamine (MOEA) molecules on Mg (0001)[51] (SEI—solid electrolyte interphase)

(c) calculated Mg migration energy barriers in bulk Mg3Sb2 and MgCl2[66]

(d) summary of the calculated diffusion barriers of Mg2+ in various inorganic Mg compounds[67]


对于扩散过程,Mg2+在SEI和负极中的扩散能力对Mg沉积的生长过程有着至关重要的影响。为了模拟Mg2+在特定扩散路径上的扩散能力,通常采用爬升微推弹性带(climbing image nudged elastic band,CI-NEB)的方法(图6c[66]和d[67])。Mg3Sb2、Mg3Bi2、Mg2Sn、Mg2Ga5、MgCl2和BiCl3等合金相和金属氯化物的晶体内部路径的Mg2+扩散能垒较低,被认为是SEI设计中的关键结构之一。因此,借助DFT计算吸附能和扩散能等,能够获得负极/电解液界面的关键科学指导,从而更有效地将有益组分整合到电解液结构或SEI结构之中,无疑为电池负极与界面的研究开辟了新的视野,提供了更为深入和全面的理解。

相场模拟在电化学反应过程的理论模拟中占据了举足轻重的地位。它不仅具备解析复杂物理和化学过程的能力,更在展现界面过程方面展现出了无可比拟的优势。特别是在负极-电解液界面的研究中,离子与电场的动态变化对于Mg的成核和生长行为具有至关重要的影响,而相场模拟正是捕捉这些微妙变化的有力工具。为了更深入地理解Mg沉积过程中的物理和化学机制,通过将电沉积过程的相场模型和原子尺度模拟相结合,巧妙地融入了从DFT计算中得到的电荷转移动力学参数和表面能,从而进一步提升了对Mg沉积形貌演变过程模拟的准确性和可靠性(图7a[68])。通过这种合理的理论模拟结合,能够直观地观察到Mg沉积形貌的演变过程,从而理解Mg在电沉积过程中的复杂行为。相场模拟不仅能够深化对电化学过程中Mg沉积机制的理解,还能为优化Mg沉积条件、控制其沉积形貌提供有力的理论支撑。通过模拟不同条件下的Mg沉积过程,可以预测并优化Mg沉积过程,以获得更加均匀、致密的Mg沉积层。此外,相场模拟还可以用于研究其他电化学反应过程和新型负极材料设计与优化工艺等领域,不仅能够在离子嵌入/脱出、电解质的分解和SEI膜的形成等方面给出指导,还能够应用于金属冶炼、凝固、固溶时效、变形以及增材制造等重要加工环节,为设计更高效的负极材料提供理论指导。

图7

图7   相场模拟及分子动力学模拟:通过相场模拟得出Li和Mg的沉积形貌[68];Mg(OTf)2/DME/G2和Mg(OTf)2/DME/G2/MOEA电解质体系的溶剂化结构分析[44];Mg(TFSI)2和Mg[B(Otfe)4]2电解质体系稳定性的从头计算分子动力学(AIMD)模拟[69]

Fig.7   Phase-field and molecular dynamics (MD) simulation

(a) phase-field simulation morphologies of Li and Mg at different time under a constant potential of 0.1 V[68] (r—distance between the calculate particle and the central particle)

(b) MD snapshots and radial distribution functions of O or N atoms in DME, G2, OTf, and MOEA with respect to Mg2+ in the Mg(OTf)2/DME/G2 and Mg(OTf)2/DME/G2/MOEA electrolytes, and solvation structure analysis of the two electrolyte systems[44] (g(r)—radial distribution function)

(c) representative snapshots of Mg(TFSI)2 and Mg[B(Otfe)4]2 on the Mg surface at various times from AIMD simulations at 750 K[69]


分子动力学(molecular dynamics,MD)模拟对于理解电解液结构和界面反应的深层次机制具有显著的优势,能够从微观尺度上理解电解液体相中分子的动态行为,以及电解液与负极界面之间的相互作用。根据处理原子相互作用力的方式,MD可细分为经典分子动力学(classical molecular dynamics,CMD)、从头计算分子动力学(ab initio molecular dynamics,AIMD)以及机器学习分子动力学(machine learning molecular dynamics,MLMD) 3大类。其中,CMD是应用最广泛的方法。它采用预定义的数学表达式和经典的势函数来模拟原子间的相互作用,这种方法计算效率较高,能够处理包含大量原子的系统,因此在研究电解液结构和界面反应方面具有重要价值。通过CMD模拟可以深入理解电解液中溶剂化结构、离子或溶剂分子的运动轨迹和扩散系数等多重因素对界面结构的影响(图7b[44]c[69])。这不仅揭示了微观层面相互作用的复杂性与多样性,还提供了深入理解电解液界面行为及其对电池性能影响的宝贵视角。AIMD是一种更为精确但计算成本较高的方法,它基于量子力学原理,直接从电子结构出发计算原子间的相互作用力。这种方法能够更准确地描述分子间的电子交换和能量转移过程,因此在研究界面反应机理和电荷转移过程方面具有独特优势。近年来,随着机器学习领域的快速发展,MLMD逐渐成为了一个新的研究热点。这种方法通过在实验数据或从头算数据上训练机器学习模型,从而产生机器学习势能,为理解原子相互作用提供了一种前沿的方法。

2.2.2 负极成分与结构设计

近年,越来越多的研究工作遵循以理论模拟为指引、实验探索为基础的原则,深入探索电极在电化学过程中的复杂物理/化学变化,力求透彻理解界面反应机制。在此基础上,积极推进新型负极材料成分与结构的开发,通过运用数学建模和理论计算方法,对复杂的界面过程进行了科学的抽象与合理的简化,从而能够预测并阐释具备卓越电化学活性的负极材料的成分与结构,明晰各组分的作用机制,以期在新型负极材料设计方面实现突破与创新。这一趋势不仅体现了理论与实践深度融合的研究模式在电化学领域的重要性,还为设计开发更高效、更稳定的负极材料性能优化策略奠定了坚实的理论基础。

例如,局部电流密度是影响Mg沉积/剥离行为的关键因素之一。理论上,通过构建三维负极结构,并耦合丰富的亲镁位点结构,能够有效降低电极的局部有效电流密度和Mg形核能垒,进而促进Mg沉积/剥离的均匀性。因此,得益于较大的比表面积和良好的亲镁性,三维GC-NSs能够实现均匀可逆的Mg沉积/剥离过程,具备较高的导电性、倍率性能、库仑效率和循环寿命[14]。如图8a[70]所示,N/O掺杂碳纳米纤维阵列(VNCA@C)通过调节电场分布、利用化学吸附效应以及施加几何约束,能够实现对Mg沉积过程的有效调控,充分展示了这些条件协同作用的显著效果。具体而言,较短的阵列结构有助于实现电流密度的均匀分布,而凹窝结构则在促进Mg形核方面展现出更突出的优势,大量高化学吸附能的官能团为Mg形核提供了充足的形核位点,进而引导并确保了Mg沉积过程的均匀性和高效性。近年来,除了碳基材料之外,其他三维亲镁负极在镁电池领域的研究中也崭露头角,为镁电池新型负极材料领域提供了更多元化的选择。这些材料包括三维MoSe2、无定形MgO包裹Zn骨架、Ni(OH)2@CC及三维Mg3Bi2等,它们各自具有独特的结构和性能优势,从而在镁电池领域的研究中展现出了巨大的潜力[14~18]。较于纯Mg箔材负极,各种三维亲镁负极因独特的微观结构和化学成分展现出特定的优势。然而,这些新型三维亲镁负极因比表面积较高,会导致更大面积SEI的形成。这一特点虽然有利于降低局部电流密度,但同时也对SEI的稳定性提出了更高的要求。因此,如何在这些三维亲镁负极上构建出更加稳定、均匀的SEI层,从而确保负极在充、放电过程中的稳定性,仍然是当前镁电池研究领域亟待解决的关键问题。

图8

图8   负极材料成分与结构设计:亲镁三维结构的材料[70];AZ31镁合金负极[71];纳米Mg负极(N-Mg)[72];Mg-Gd镁合金负极[74];Mg-Ce镁合金负极[76]

Fig.8   Compositions and structure design of the anode materials

(a) 3D magnesiophilic anode materials[70] (J / J0normalized current density, d / d0—normalized electrode distance, E / E0normalized chemisorption energy, θ—wetting angle)

(b) nano-Mg (N-Mg) nanostructured anode[71]

(c) AZ31 alloy anode[72]

(d) Mg-Gd alloy anode[74]

(e) Mg-Ce alloy anode[76]


此外,通过结构微粉化处理也能够有效缓解纯Mg负极的界面钝化现象。例如,研究[71]发现,相较于块体纯Mg负极(B-Mg),平均粒径约为2.5 nm的纳米Mg负极(N-Mg)展现出了更出色的电化学性能。N-Mg的比表面积较大,形成的钝化膜相比于B-Mg更薄,从而缓解了界面钝化。因此,N-Mg与MoS2正极耦合可以达到170 mA·h/g的初始放电比容量(图8b[71])。由此可见,纯Mg负极的结构设计对其电化学性能至关重要。通过探究纯Mg负极的结构与作用机制,并据此采取针对性的改进措施,有望大幅提升纯Mg负极的综合性能,为镁电池在未来的广泛应用奠定更为坚实的基础。

添加微量合金元素能够显著影响纯Mg负极的沉积/剥离行为。例如,AZ31镁合金(Mg-3Al-Zn,质量分数,%)作为应用最广泛的变形镁合金,在镁电池负极领域展现出一定的潜力。Maddegalla等[72]发现,相较于纯Mg负极,AZ31镁合金负极的沉积/剥离形貌更为平整(图8c[72])。Mandai和Somekawa[73]发现,添加相同质量分数的合金元素后,合金的过电势变化呈现出一定的规律:Mg-Ca < Mg-Ag < Mg ≈ Mg-Al ≈ Mg-Li ≈ Mg-Mn ≈ Mg-Sn ≈ Mg-Y < Mg-Zn < Mg-Bi,证明合金元素的种类和含量与镁合金的电化学性能之间存在着密切而复杂的关联。近日,本团队在负极材料微合金化技术的研究领域取得了突破性进展。研究[74]表明,Mg-1%Gd (原子分数)合金负极表现出更小的过电位,循环稳定性大于200 h,寿命是纯Mg负极的2倍左右。DFT计算表明,Mg原子在Mg-Gd合金负极中的最低扩散能垒为0.34 eV,明显低于纯Mg负极(0.62 eV)及其他二元合金[74,75],如图8d[74]所示。同时,本团队还提出引入电极电位相近的合金元素(如Ce)以减弱纯Mg负极的电偶腐蚀现象[76]。这些研究不仅从原子层面揭示了微量合金元素的添加对纯Mg负极沉积/剥离行为的影响,还为后续的合金成分设计、性能优化策略以及新型镁电池的研发提供了理论依据和实验指导。

2.2.3 负极SEI膜改性

通过理论模拟耦合实验探索,基于合金负极的作用机制所开展的合金型人工SEI膜的研究,已成为当前镁电池负极界面领域关注的研究热点之一[77~79]。与合金负极类似,合金型人工SEI膜中的合金成分在减轻界面钝化问题上展现出了显著效果。值得一提的是,相较于合金负极,采用合金型人工SEI膜保护的纯Mg负极还具有理论比容量较高的优势。这种合金型人工SEI膜的界面改性策略,巧妙地融合了纯Mg负极与合金负极的双重优点,为提升电池综合性能、有效延长循环寿命以及出色解决电池安全挑战等方面提供了新的思路和解决策略。

例如,Ga负极是镁电池负极材料领域的一大研究热点[80~82]。2021年,本课题组[81]利用DFT计算了Mg2+在Mg-Ga体系中的扩散能力。结果表明,Mg2Ga5具有优异的Mg2+扩散能力,Mg2+在Mg2Ga5层内和跨层中的扩散能垒分别为1.91和2.55 eV。同时,其优异的亲镁性为Mg2+提供了充足的吸附位点,这有利于改善界面性质,降低界面阻抗和极化现象。因此,镓基人工SEI膜能够展现出良好的界面相容性(图9a[82]b[80])。此外,镓基人工SEI膜在弯曲、折叠和加热等极端条件下,还能够展现出强大的机械稳定性和牢固的机械结合力,进一步验证了其在镁电池领域中巨大的研究潜力和应用价值。然而,这类由单一合金成分构成的SEI膜是离子和电子的混合导体,其电子绝缘性相对不足。这一特点使其在长循环过程中可能发生破损或脱离问题,成为影响负极稳定性和电池循环寿命的关键因素之一。

图9

图9   负极固体电解质界面(SEI)膜改性:Mg2Ga5人工SEI膜[82];Ga5Mg2-Mg人工SEI膜[80];Bi/MgCl2/聚四氢呋喃(PTHF)杂化人工SEI膜[84];MgMOF@Mg的作用机理[87];无机沸石聚合物人工SEI膜[89];植酸人工SEI膜[91];Al3+增强型植酸人工SEI膜[92]

Fig.9   SEI fabricated anodes

(a) Mg2Ga5 alloy-type layer[82]

(b) Ga5Mg2-Mg layer[80]

(c) Bi/MgCl2/PTHF (polytetrahydrofuran) SEI layer[84] (ECH—epichlorohydrin)

(d) schematic illustration of the MgMOF@Mg[87] (MOF—metal organic framework)

(e) zeolite-polymer SEI layer[89]

(f) phytic acid (PA) SEI layer[91]

(g) PA-Al SEI layer[92]


设计/调控人工SEI膜的成分与结构是解决其电子绝缘性不足的有效手段。例如,合金/卤化物型复合人工SEI膜不仅具备良好的电子绝缘性,还能够降低Mg2+扩散能垒,从而展现出良好的电化学性能和结构稳定性。以Bi/MgCl2型复合人工SEI膜为例[83],其膜层结构复杂而有序,主要由Bi、Mg、Mg3Bi2及MgCl2等组成。其中,Bi及Mg3Bi2等合金成分使其具备良好的界面相容性,而MgCl2及BiCl3等卤化物成分则提供了良好的电子绝缘性。这一特性有效地避免了Mg2+在SEI膜的顶层还原,从而使其在循环过程中保持良好的稳定性。除了卤化物成分,也有研究探索了复合SEI膜中有机成分的贡献。以Bi/MgCl2/聚四氢呋喃(PTHF)杂化人工SEI膜为例(图9c[84]),PTHF能够有效填充人工SEI膜的缝隙,极大地增强了SEI膜的机械稳定性和循环稳定性,其循环寿命大于2000 h[84]。同时,该SEI膜还展现出优异的防水性能,在Mg(TFSI)2/DME (含水量2500 × 10-6)电解液中,仍然能够稳定循环超过250 h。由此可见,SEI膜的成分和结构设计对于提升其在实际应用中的可靠性、安全性以及拓宽其使用场景具有重要意义。因此,诸如Sn/MgCl2型、Sb/MgBr2型、Sb/MgI2型等合金/卤化物型复合人工SEI膜[67,85,86],凭借其独特的物理/化学特性和潜在的优异电化学性能,正逐渐成为镁电池技术发展的热点方向之一。

金属有机框架(MOF)型人工SEI膜是成分与结构调控的代表性案例。其独特的多孔结构和精确的分子筛分能力,可用于溶剂分子的精确分离和Mg2+的选择性运输,能够高效阻止钝化物质的渗透与分解过程[87,88]。以垂直取向的MgMOF层为例(图9d[87]),其SEI结构中拥有丰富的亲镁位点(C=O基团,吸附能约-2.73 eV)和一维Mg2+传输通道(通道尺寸为1 nm,Mg2+直径为0.14 nm),能够实现钝化型离子/分子的精准筛选和Mg的高效传输。因此,在8 mA/cm2的高电流密度下,MgMOF层改性的纯Mg负极展现出优异的长循环稳定性(> 1200 h)[87]。此外,Li等[89]报道了一种高效且经济适用的无机沸石聚合物人工SEI膜(图9e[89]),提出沿沸石表面吸附的G2分子传输和沿沸石表面晶体中的空隙(沿H2O分子跳跃)传输2种Mg2+传输机制,为Mg2+在SEI膜中的传输机制提供了宝贵的经验与参考。

SEI膜中的有机组分具有高弹性和高柔韧性的特点,能够适应Mg沉积/剥离过程中剧烈的体积变化。例如,Son等[90]构建了热环化聚丙烯腈-三氟甲烷磺酸(cPAN-Mg(OTf)2)有机型人工SEI膜,厚度仅100 nm,却能展现出良好的离子电导性、高度的柔韧性和优异的耐水性,实现了SEI膜结构与功能的高度平衡。此外,2023年,本课题组[91,92]成功研发出一系列以植酸为基础构建的人工SEI膜,能够改善负极/电解液界面的离子运输和分布,实现均匀Mg沉积/剥离过程,从而显著提升了纯Mg负极的循环寿命。研究[91,92]表明,在植酸人工SEI膜中,Mg2+是以一种高效的“配位跳跃”机制实现了快速的迁移过程,迁移能垒仅0.32 eV (图9f[91]);引入金属离子增强SEI膜,可以进一步降低迁移能垒至0.18 eV (图9g[92])。此外,这类SEI膜还能够在大气条件下实现大规模可控制备,显著改善软包电池中纯Mg负极的穿孔问题,具备良好的应用潜力。这一系列发现不仅深化了对SEI膜中Mg2+传输机制的理解,也为未来优化其性能及拓宽应用领域提供了重要的科学依据和技术支撑。

3 结论与展望

本文全面而深入地探讨了可充电镁电池负极材料及界面调控领域的研究现状及未来发展趋势,涵盖了负极材料的成分、结构设计以及界面调控策略等多个方面的主要研究方向。通过对当前镁电池负极及界面研究领域的细致梳理与系统归纳,分析了纯Mg负极和合金负极在能量密度、循环稳定性等方面的优势与局限性,同时探讨了负极界面的失效机制及解决方案。针对界面钝化、不均匀Mg沉积/剥离行为及负极体积膨胀等制约镁电池性能的关键问题,深入分析了界面问题产生的本质原因,系统梳理了当前已有的解决方案。在此基础上,进一步探讨了未来发展方向,强调了开发新型负极材料、提炼优势成分与结构、挖掘潜在应用价值以及跨学科融合等在推动镁电池负极材料及界面调控领域中的核心作用与深远影响。本文旨在揭示影响可充电镁电池负极材料电化学性能的关键因素,指出提升电化学性能的内在逻辑,从而有针对性地开发出高性能的负极材料及界面调控方案,为未来研究和实践提供指导与启示。

(1) 以理论研究为基石:在当今科技发展迅猛、日新月异的时代背景下,DFT计算、相场模拟、MD模拟及人工智能与大数据分析平台的开发与应用,正逐步成为科学研究与应用研发过程中必不可少的关键工具,为材料研究领域注入了前所未有的创新活力。这些先进的理论模拟及数据分析技术,为揭示负极材料结构与性能之间的复杂关系提供了强大的理论支持。通过理论模拟,可以精确了解材料的电子结构、相变过程以及内部原子/分子的运动状态,从而深入理解材料在充、放电过程中的电子传递与能量转换机制,揭示并预测其反应活性与变化规律。这些理论研究为理解材料在电极过程中的内在变化规律、结构与性能之间的关系提供了理论指导与研究途径。借助这些理论模拟手段,能够预测不同材料在电池中的应用效果,为材料选择、结构设计及性能优化提供科学依据,从而指导负极及界面的电化学性能的优化。

(2) 负极材料的开发与创新:负极材料是镁电池系统的核心要素,其性能对电池性能起着决定性作用。针对纯Mg负极的钝化问题,部分研究设计了具有良好界面相容性的非镁基负极材料,如基于IIIA、IVA、VA族元素构建的合金负极以及三维亲镁负极等。这些材料能够有效地规避纯Mg负极所面临的钝化、不均匀Mg沉积/剥离及穿孔等问题,但其理论比容量和体积膨胀问题仍然面临严峻的挑战。当前,微合金化技术作为优化负极电化学性能的一种有效策略展现出巨大潜力。研究表明,在负极中添加微量合金元素,如Gd、Ce等,可以显著改善Mg沉积/剥离过程的均匀性。同时,微合金化技术还能有效应对Mg在加工过程中所面临的难题,显著降低Mg箔材的制备成本。这一技术不仅是负极材料领域创新开发的重要驱动力,更是推动镁电池技术发展的关键步骤。

(3) SEI膜的优化与设计:SEI膜组成的灵活性与结构的可定制性为电池性能的优化带来了新机遇。目前,针对纯Mg负极表面SEI膜的研究已取得一定进展,成功开发出合金型、金属/卤化物基、MOF、有机、无机及杂化等多种类型的SEI膜。其中,合金型和金属/卤化物基SEI膜展现出优异的离子导电性,但如何在SEI膜表面抑制非预期的Mg沉积仍是亟待解决的问题;MOF基SEI膜能够有效筛分溶剂及溶剂化离子,但如何提升其结构稳定性和均匀性仍是当前面临的重要挑战;有机SEI膜虽具备一定的自修复能力,但其离子电导率却受到一定限制;无机SEI膜因柔韧性不足而在应用上受到了一定程度的限制。因此,有机/无机杂化SEI膜因其潜在的综合性能,有望成为实现高性能电池的理想选择。此外,未来的研究工作还应聚焦于开发适用于大面积、规模化生产的SEI膜制造技术,并系统性地评估其在大尺寸电极(如软包或圆柱电池)中的电化学性能。

参考文献

Zhu G Z, Tian X, Tai H C, et al.

Rechargeable Na/Cl2 and Li/Cl2 batteries

[J]. Nature, 2021, 596: 525

[本文引用: 1]

Han G, Lu Y F, Jia H X, et al.

Magnesium-based energy materials: Progress, challenges, and perspectives

[J]. J. Magnes. Alloy., 2023, 11: 3896

Liu D Y, Wu B B, Xu Y B, et al.

Controlled large-area lithium deposition to reduce swelling of high-energy lithium metal pouch cells in liquid electrolytes

[J]. Nat. Energy, 2024, 9: 559

Zhang H, Qiao L X, Armand M.

Organic electrolyte design for rechargeable batteries: From lithium to magnesium

[J]. Angew. Chem. Int. Ed., 2022, 61: e202214054

Wen T T, Xiao H, Tan S S, et al.

Interfacial chemistry of anode/electrolyte interface for rechargeable magnesium batteries

[J]. J. Magnes. Alloy., 2024, 12: 2647

Li Q, Sun X, Luo Q, et al.

Regulation of hydrogen storage phase and its interface in magnesium-based materials for hydrogen storage performance

[J]. Acta Metall. Sin., 2023, 59: 349

DOI     

Mg-based hydrogen storage materials have drawn a lot of attention due to the merit of high hydrogen storage density, earth-abundant resources, and environmental friendliness. However, the slow kinetics, high hydrogen absorption/desorption temperature, and poor cycling stability of Mg-based hydrogen storage materials prevent them from being used on a large scale. The developments of new alloys, nano-structure control, catalytic modification, and multiphase composites, among other things, have made significant progress in Mg-based hydrogen storage materials in recent years. However, challenges still exist, such as high hydrogen storage capacity, moderate adsorption/desorption temperature, rapid reaction rate, and long cycling life. In this review paper, the types of hydrogen storage phases and their interface in Mg-based materials, and the control methods of their microstructure/interface characteristics are systematically summarized. The mechanism of the hydrogen storage phase, microstructure, and surface/interface modifications on the improved thermal/kinetic performance of hydrogen storage are highlighted. This review concludes with an outlook and prospects on the challenge of designing Mg-based hydrogen storage materials by controlling the hydrogen storage phase and the corresponding interface.

李 谦, 孙 璇, 罗 群 .

镁基材料中储氢相及其界面与储氢性能的调控

[J]. 金属学报, 2023, 59: 349

Yang Y, Xiong X M, Chen J, et al.

Research advances of magnesium and magnesium alloys worldwide in 2022

[J]. J. Magnes. Alloy., 2023, 11: 2611

[本文引用: 1]

Wang D, Zhang Z Y, Hao Y, et al.

Challenges and progress in rechargeable magnesium‐ion batteries: Materials, interfaces, and devices

[J]. Adv. Funct. Mater., 2024, 34: 2410406

[本文引用: 1]

Wang Z T, Deng R R, Li R, et al.

Review of research on anode materials for secondary magnesium batteries

[J]. Chin. J. Rare Met., 2024, 48: 79

王中霆, 邓容锐, 李 荣 .

镁二次电池负极材料的研究综述

[J]. 稀有金属, 2024, 48: 79

Li Z, Yao Y Y, Li B F, et al.

Rechargeable magnesium batteries: Development, opportunities and challenges

[J]. Chin. J. Nonferrous Met., 2021, 31: 3192

李 钊, 姚赢赢, 李博飞 .

可充镁电池: 发展、机遇与挑战

[J]. 中国有色金属学报, 2021, 31: 3192

Xiao J H, Zhao Y X, Fan H Y, et al.

Research progress on rechargeable magnesium/sulfur battery

[J]. J. Chin. Ceram. Soc., 2020, 48: 963

[本文引用: 1]

肖建华, 赵宇星, 范海燕 .

镁硫二次电池研究进展

[J]. 硅酸盐学报, 2020, 48: 963

[本文引用: 1]

Davidson R, Verma A, Santos D, et al.

Formation of magnesium dendrites during electrodeposition

[J]. ACS Energy Lett., 2019, 4: 375

DOI      [本文引用: 2]

We demonstrate the growth of dendritic magnesium deposits with fractal morphologies exhibiting shear moduli in excess of values for polymeric separators upon the galvanostatic electrodeposition of metallic Mg from Grignard reagents in symmetric Mg-Mg cells. Dendritic growth is understood on the basis of the competing influences of reaction rate, electrolyte transport rate, and self-diffusion barrier.

Kwak J H, Jeoun Y, Oh S H, et al.

Operando visualization of morphological evolution in Mg metal anode: Insight into dendrite suppression for stable Mg metal batteries

[J]. ACS Energy Lett., 2022, 7: 162

[本文引用: 1]

Lim H D, Kim D H, Park S, et al.

Magnesiophilic graphitic carbon nanosubstrate for highly efficient and fast-rechargeable Mg metal batteries

[J]. ACS Appl. Mater. Interfaces, 2019, 11: 38754

[本文引用: 3]

Wan B X, Dou H L, Zhao X L, et al.

Three-dimensional magnesiophilic scaffolds for reduced passivation toward high-rate Mg metal anodes in a noncorrosive electrolyte

[J]. ACS Appl. Mater. Interfaces, 2020, 12: 28298

Shen T, Luo C Z, Hao Y, et al.

Magnesiophilic interface of 3D MoSe2 for reduced Mg anode overpotential

[J]. Front. Chem., 2020, 8: 459

Bae J, Park H, Guo X L, et al.

High-performance magnesium metal batteries via switching the passivation film into a solid electrolyte interphase

[J]. Energy Environ. Sci., 2021, 14: 4391

Wang G X, Liu X, Shi H C, et al.

Achieving planar electroplating/stripping behavior of magnesium metal anode for a practical magnesium battery

[J]. ACS Energy Lett., 2024, 9: 48

[本文引用: 3]

Wen T T, Deng Y J, Qu B H, et al.

Re-envisioning the key factors of magnesium metal anodes for rechargeable magnesium batteries

[J]. ACS Energy Lett., 2023, 8: 4848

[本文引用: 5]

Davidson R, Verma A, Santos D, et al.

Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities

[J]. Mater. Horiz., 2020, 7: 843

[本文引用: 3]

Liu X, Du A B, Guo Z Y, et al.

Uneven stripping behavior, an unheeded killer of Mg anodes

[J]. Adv. Mater., 2022, 34: 2201886

[本文引用: 4]

Tian J, Lu H H, Zhang W G, et al.

An effective rolling process of magnesium alloys for suppressing edge cracks: Width-limited rolling

[J]. J. Magnes. Alloy., 2022, 10: 2193

[本文引用: 4]

Pan F S, Jiang B.

Development and application of plastic processing technologies of magnesium alloys

[J]. Acta Metall. Sin., 2021, 57: 1362

DOI     

China has the most abundant magnesium resources in the world. Magnesium and its alloys have the advantages of low density, high specific strength, good damping property, and exceptional electromagnetic-shielding and energy-storage characteristics. They are one of the most promising lightweight materials. The enhanced applications of magnesium alloys can save energy and reduce emissions and are significant to the new Chinese energy strategy. However, magnesium alloys have a hexagonal close-packed structure and exhibit relatively low ductility. A bottleneck in expanding the application of magnesium alloys is improving the ductility of magnesium alloys. For more than ten years, efforts have been made to improve the ductility and plastic deformation ability. Progress has been made in plastic-processing technologies of magnesium alloys. The novel alloy design theory “solid solution strengthening and ductilizing” and advanced preparation technologies such as “melt self-purification through varying temperature” have been established. Series of new magnesium alloys with good ductility and corresponding alloy grades have been developed, where the impurity content of iron can be reduced to below 10 × 10-6; the elongation was more than 60% for ultrahigh plasticity magnesium alloys and is above 10% for the ultrahigh-strength magnesium alloys (UTS > 550 MPa). New plastic-processing technologies, such as asymmetric extrusion, asymmetric rolling, asymmetric modification, cyclical multipass upsetting and squeezing, expansion control large ratio forging, and extrusion and forging composite forming, have been developed. These newly developed magnesium alloys and processing technologies weaken the basal texture in wrought magnesium alloys, improving the formability of sheets, tubes, profiles, and forgings and their product quality and reducing their product cost. These technologies have been successfully applied in the processing of magnesium sheets, pipe profiles, and forgings.

潘复生, 蒋 斌.

镁合金塑性加工技术发展及应用

[J]. 金属学报, 2021, 57: 1362

DOI     

我国是世界上镁资源最为丰富的国家,镁及镁合金具有质轻、比强度高、阻尼减振、电磁屏蔽性能优良、储能特性好等优点,是最有潜力的轻量化材料之一,其推广应用对节能减排和能源转型战略具有重要意义。但镁合金具有密排六方晶体结构,塑性变形能力较差。如何改善镁合金的塑性变形能力是扩大镁合金应用的瓶颈问题之一。本文综述了10多年来,世界各国在改善镁合金塑性、提升镁合金塑性变形能力等方面所做的大量工作,及在镁合金塑性加工技术等方面取得的重要进展。发展了“固溶强化增塑”新型镁合金设计理论和“熔体变温自纯化”等关键制备技术,形成了一批高塑性变形镁合金材料和牌号,其中杂质Fe含量可降到10 × 10<sup>-6</sup>以下,超高塑性镁合金延伸率可达到60%以上,超高强度(抗拉强度大于550 MPa)镁合金延伸率可以达到10%以上;开发了非对称挤压、非对称轧制、非对称改性、往复循环多道次镦挤开坯技术、扩收控制大比率锻造技术、挤锻复合成形技术等一批镁合金新型塑性加工技术。这些合金和技术使变形镁合金基面织构显著弱化,明显提高了变形镁合金板材、管型材和锻件的塑性成形能力和制品质量,产品成本大幅度降低,在板材、管型材和锻件制备加工中实现了成功应用。

Mandai T, Somekawa H.

Ultrathin magnesium metal anode—An essential component for high-energy-density magnesium battery materialization

[J]. Batter. Supercaps, 2022, 5: e202200153

[本文引用: 4]

Wang L, Welborn S S, Kumar H, et al.

High-rate and long cycle-life alloy-type magnesium-ion battery anode enabled through (De)magnesiation-induced near-room-temperature solid-liquid phase transformation

[J]. Adv. Energy Mater., 2019, 9: 1902086

[本文引用: 5]

Wang M C, Yuwono J A, Vasudevan V, et al.

Atomistic mechanisms of Mg insertion reactions in group XIV anodes for Mg-ion batteries

[J]. ACS Appl. Mater. Interfaces, 2019, 11: 774

Yaghoobnejad Asl H, Fu J T, Kumar H, et al.

In situ dealloying of bulk Mg2Sn in Mg-ion half cell as an effective route to nanostructured sn for high performance Mg-ion battery anodes

[J]. Chem. Mater., 2018, 30: 1815

[本文引用: 2]

Nacimiento F, Cabello M, Pérez-Vicente C, et al.

On the mechanism of magnesium storage in micro- and nano-particulate tin battery electrodes

[J]. Nanomaterials, 2018, 8: 501

Arthur T S, Singh N, Matsui M.

Electrodeposited Bi, Sb and Bi1 - x Sb x alloys as anodes for Mg-ion batteries

[J]. Electrochem. Commun., 2012, 16: 103

[本文引用: 1]

Sibari A, Marjaoui A, Lakhal M, et al.

Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: A first-principle study

[J]. Sol. Energy Mater. Sol. Cells, 2018, 180: 253

[本文引用: 1]

Nguyen G T H, Nguyen D T, Song S W.

Unveiling the roles of formation process in improving cycling performance of magnesium stannide composite anode for magnesium-ion batteries

[J]. Adv. Mater. Interfaces, 2018, 5: 1801039

[本文引用: 2]

Niu J Z, Zhang Z H, Aurbach D.

Alloy anode materials for rechargeable Mg Ion batteries

[J]. Adv. Energy Mater., 2020, 10: 2000697

Hembram K P S S, Jung H, Yeo B C, et al.

A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries

[J]. Phys. Chem. Chem. Phys., 2016, 18: 21391

DOI      PMID      [本文引用: 1]

Using first-principles calculations, we describe and compare atomistic lithiation, sodiation, and magnesiation processes in black phosphorous with a layered structure similar to graphite for Li-, Na-, and Mg-ion batteries because graphite is not considered to be an electrode material for Na- and Mg-ion batteries. The three processes are similar in that an intercalation mechanism occurs at low Li/Na/Mg concentrations, and then further insertion of Li/Na/Mg leads to a change from the intercalation mechanism to an alloying process. Li and Mg show a columnar intercalation mechanism and prefer to locate in different phosphorene layers, while Na shows a planar intercalation mechanism and preferentially localizes in the same layer. In addition, we compare the mechanical properties of black phosphorous during lithiation, sodiation, and magnesiation. Interestingly, lithiation and sodiation at high concentrations (Li2P and Na2P) lead to the softening of black phosphorous, whereas magnesiation shows a hardening phenomenon. In addition, the diffusion of Li/Na/Mg in black phosphorus during the intercalation process is an easy process along one-dimensional channels in black phosphorus with marginal energy barriers. The diffusion of Li has a lower energy barrier in black phosphorus than in graphite.

Shao Y Y, Gu M, Li X L, et al.

Highly reversible Mg insertion in nanostructured Bi for Mg Ion batteries

[J]. Nano Lett., 2014, 14: 255

DOI      PMID      [本文引用: 5]

Rechargeable magnesium batteries have attracted wide attention for energy storage. Currently, most studies focus on Mg metal as the anode, but this approach is still limited by the properties of the electrolyte and poor control of the Mg plating/stripping processes. This paper reports the synthesis and application of Bi nanotubes as a high-performance anode material for rechargeable Mg ion batteries. The nanostructured Bi anode delivers a high reversible specific capacity (350 mAh/gBi or 3430 mAh/cm(3)Bi), excellent stability, and high Coulombic efficiency (95% initial and very close to 100% afterward). The good performance is attributed to the unique properties of in situ formed, interconnected nanoporous bismuth. Such nanostructures can effectively accommodate the large volume change without losing electric contact and significantly reduce diffusion length for Mg(2+). Significantly, the nanostructured Bi anode can be used with conventional electrolytes which will open new opportunities to study Mg ion battery chemistry and further improve its properties.

Wang L, Ng A, Family R, et al.

Liquid eutectic gallium-indium as a magnesium-ion battery anode with ultralong cycle life enabled by liquid-solid phase transformation during (de)magnesiation at room temperature

[J]. J. Mater. Chem., 2024, 12A: 27435

[本文引用: 1]

Zheng X W, Yuan Y, Gu D C, et al.

Self-healable, high-stability anode for rechargeable magnesium batteries realized by graphene-confined gallium metal

[J]. Nano Lett., 2024, 24: 10734

[本文引用: 4]

Jin W, Wang Z G.

Facet-dependent magnesiation behavior of α-Sn as an anode for magnesium ion batteries

[J]. RSC Adv., 2017, 7: 44547

[本文引用: 1]

Legrain F, Malyi O I, Persson C, et al.

Comparison of alpha and beta tin for lithium, sodium, and magnesium storage: An ab initio study including phonon contributions

[J]. J. Chem. Phys., 2015, 143: 204701

[本文引用: 1]

Nguyen D T, Tran X M, Kang J, et al.

Magnesium storage performance and surface film formation behavior of tin anode material

[J]. ChemElectroChem, 2016, 3: 1813

[本文引用: 1]

Jung S C, Han Y K.

Fast magnesium ion transport in the Bi/Mg3Bi2 two-phase electrode

[J]. J. Phys. Chem., 2018, 122C: 17643

[本文引用: 1]

Rajput N N, Qu X H, Sa N Y, et al.

The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics

[J]. J. Am. Chem. Soc., 2015, 137: 3411

DOI      PMID      [本文引用: 5]

In this work we uncover a novel effect between concentration dependent ion pair formation and anion stability at reducing potentials, e.g., at the metal anode. Through comprehensive calculations using both first-principles as well as well-benchmarked classical molecular dynamics over a matrix of electrolytes, covering solvents and salt anions with a broad range in chemistry, we elucidate systematic correlations between molecular level interactions and composite electrolyte properties, such as electrochemical stability, solvation structure, and dynamics. We find that Mg electrolytes are highly prone to ion pair formation, even at modest concentrations, for a wide range of solvents with different dielectric constants, which have implications for dynamics as well as charge transfer. Specifically, we observe that, at Mg metal potentials, the ion pair undergoes partial reduction at the Mg cation center (Mg(2+) → Mg(+)), which competes with the charge transfer mechanism and can activate the anion to render it susceptible to decomposition. Specifically, TFSI(-) exhibits a significant bond weakening while paired with the transient, partially reduced Mg(+). In contrast, BH4(-) and BF4(-) are shown to be chemically stable in a reduced ion pair configuration. Furthermore, we observe that higher order glymes as well as DMSO improve the solubility of Mg salts, but only the longer glyme chains reduce the dynamics of the ions in solution. This information provides critical design metrics for future electrolytes as it elucidates a close connection between bulk solvation and cathodic stability as well as the dynamics of the salt.

Seguin T J, Hahn N T, Zavadil K R, et al.

Elucidating non-aqueous solvent stability and associated decomposition mechanisms for Mg energy storage applications from first-principles

[J]. Front. Chem., 2019, 7: 175

DOI      PMID      [本文引用: 3]

Rational design of novel electrolytes with enhanced functionality requires fundamental molecular-level understanding of structure-property relationships. Here we examine the suitability of a range of organic solvents for non-aqueous electrolytes in secondary magnesium batteries using density functional theory (DFT) calculations as well as experimental probes such as cyclic voltammetry and Raman spectroscopy. The solvents considered include ethereal solvents (e.g., glymes) sulfones (e.g., tetramethylene sulfone), and acetonitrile. Computed reduction potentials show that all solvents considered are stable against reduction by Mg metal. Additional computations were carried out to assess the stability of solvents in contact with partially reduced Mg cations (Mg → Mg) formed during cycling (e.g., deposition) by identifying reaction profiles of decomposition pathways. Most solvents, including some proposed for secondary Mg energy storage applications, exhibit decomposition pathways that are surprisingly exergonic. Interestingly, the stability of these solvents is largely dictated by magnitude of the kinetic barrier to decomposition. This insight should be valuable toward rational design of improved Mg electrolytes.

Zhang J L, Liu J, Wang M, et al.

The origin of anode-electrolyte interfacial passivation in rechargeable Mg-metal batteries

[J]. Energy Environ. Sci., 2023, 16: 1111

[本文引用: 4]

Du Y Y, Chen Y M, Tan S S, et al.

Strong solvent coordination effect inducing gradient solid-electrolyte-interphase formation for highly efficient Mg plating/stripping

[J]. Energy Storage Mater., 2023, 62: 102939

[本文引用: 4]

Cheng M X, Ren W, Zhang D, et al.

Efficient single-perfluorinated borate-based electrolytes for rechargeable magnesium batteries

[J]. Energy Storage Mater., 2022, 51: 764

Sun Y, Wang Y H, Jiang L W, et al.

Non-nucleophilic electrolyte with non-fluorinated hybrid solvents for long-life magnesium metal batteries

[J]. Energy Environ. Sci., 2023, 16: 265

Huang X T, Tan S S, Chen J L, et al.

Asymmetric SO3CF-3-grafted boron-center anion enables boron-containing interphase for high-performance rechargeable Mg batteries

[J]. Adv. Funct. Mater., 2024, 34: 2314146

[本文引用: 1]

Tutusaus O, Mohtadi R, Arthur T S, et al.

An efficient halogen-free electrolyte for use in rechargeable magnesium batteries

[J]. Angew. Chem. Int. Ed., 2015, 54: 7900

DOI      PMID      [本文引用: 1]

Unlocking the full potential of rechargeable magnesium batteries has been partially hindered by the reliance on chloride-based complex systems. Despite the high anodic stability of these electrolytes, they are corrosive toward metallic battery components, which reduce their practical electrochemical window. Following on our new design concept involving boron cluster anions, monocarborane CB11H12(-) produced the first halogen-free, simple-type Mg salt that is compatible with Mg metal and displays an oxidative stability surpassing that of ether solvents. Owing to its inertness and non-corrosive nature, the Mg(CB11H12)2/tetraglyme (MMC/G4) electrolyte system permits standardized methods of high-voltage cathode testing that uses a typical coin cell. This achievement is a turning point in the research and development of Mg electrolytes that has deep implications on realizing practical rechargeable Mg batteries.© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Du A B, Zhang Z H, Qu H T, et al.

An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium-sulfur battery

[J]. Energy Environ. Sci., 2017, 10: 2616

Zhao-Karger Z, Gil Bardaji M E, Fuhr O, et al.

A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries

[J]. J. Mater. Chem., 2017, 5A: 10815

[本文引用: 2]

Zhang D, Wang Y R, Yang Y, et al.

Constructing efficient Mg(CF3SO3)2 electrolyte via tailoring solvation and interface chemistry for high-performance rechargeable magnesium batteries

[J]. Adv. Energy Mater., 2023, 13: 2301795

[本文引用: 4]

Wang H, Feng X F, Chen Y, et al.

Reversible electrochemical interface of Mg metal and conventional electrolyte enabled by intermediate adsorption

[J]. ACS Energy Lett., 2020, 5: 200

[本文引用: 1]

Hu X C, Shen Z Z, Wan J, et al.

Insight into interfacial processes and degradation mechanism in magnesium metal batteries

[J]. Nano Energy, 2020, 78: 105338

[本文引用: 1]

Chen C F, Chen J L, Tan S S, et al.

Regulating solvation sheath by introducing multifunctional fluoride boronic esters for highly efficient magnesium stripping/plating

[J]. Energy Storage Mater., 2023, 59: 102792

[本文引用: 1]

Liu X, Wang G X, Lv Z L, et al.

A perspective on uniform plating behavior of Mg metal anode: Diffusion limited theory versus nucleation theory

[J]. Adv. Mater., 2024, 36: 2306395

[本文引用: 6]

Legrain F, Manzhos S.

Aluminum doping improves the energetics of lithium, sodium, and magnesium storage in silicon: A first-principles study

[J]. J. Power Sources, 2015, 274: 65

[本文引用: 2]

Zhao Q N, Zhao K Q, Han G F, et al.

High-capacity, fast-charging and long-life magnesium/black phosphorous composite negative electrode for non-aqueous magnesium battery

[J]. Nat. Commun., 2024, 15: 8680

DOI      PMID      [本文引用: 4]

Secondary non-aqueous magnesium-based batteries are a promising candidate for post-lithium-ion battery technologies. However, the uneven Mg plating behavior at the negative electrode leads to high overpotential and short cycle life. Here, to circumvent these issues, we report the preparation of a magnesium/black phosphorus (Mg@BP) composite and its use as a negative electrode for non-aqueous magnesium-based batteries. Via in situ and ex situ physicochemical measurements, we demonstrate that Mg ions are initially intercalated in black phosphorus two-dimensional structures, forming chemically stable MgP intermediates. After the formation of the intermediates, Mg electrodeposition reaction became the predominant. When tested in the asymmetric coin cell configuration, the Mg@BP composite electrode allowed stable stripping/plating performances for 1600 h (800 cycles), a cumulative capacity of 3200 mAh cm, and a Coulombic efficiency of 99.98%. Assembly and testing of the Mg@BP | |nano-CuS coin cell enabled a discharge capacity of 398 mAh g and an average cell discharge potential of about 1.15 V at a specific current of 560 mA g with a low decay rate of 0.016% per cycle for 225 cycles at 25 °C.© 2024. The Author(s).

Banerjee S, Pati S K.

Anodic performance of black phosphorus in magnesium-ion batteries: The significance of Mg-P bond-synergy

[J]. Chem. Commun., 2016, 52: 8381

[本文引用: 1]

Niu J Z, Gao H, Ma W S, et al.

Dual phase enhanced superior electrochemical performance of nanoporous bismuth-tin alloy anodes for magnesium-ion batteries

[J]. Energy Storage Mater., 2018, 14: 351

[本文引用: 5]

Kitada A, Kang Y, Uchimoto Y, et al.

Electrochemical reactivity of magnesium ions with Sn-based binary alloys (Cu-Sn, Pb-Sn, and In-Sn)

[J]. ECS Trans., 2014, 58: 75

Song M J, Niu J Z, Yin K B, et al.

Self-supporting, eutectic-like, nanoporous biphase bismuth-tin film for high-performance magnesium storage

[J]. Nano Res., 2019, 12: 801

[本文引用: 1]

Gu D C, Yuan Y, Liu J W, et al.

The electrochemical properties of bismuth-antimony-tin alloy anodes for magnesium ion batteries

[J]. J. Power Sources, 2022, 548: 232076

[本文引用: 2]

Gu D C, Yuan Y, Peng X H, et al.

Realizing high-stability anodes for rechargeable magnesium batteries via in situ-formed nanoporous Bi and nanosized Sn

[J]. J. Mater. Chem., 2024, 12A: 26890

[本文引用: 1]

Peng X H, Yuan Y, Gu D C, et al.

Unlocking the power of magnesium batteries: Synergistic effect of InSb-C composites to achieve superior electrochemical performance

[J]. Small, 2024, 20: 2400967

[本文引用: 4]

Yang G L, Li Y J, Zhang C, et al.

In situ formed magnesiophilic sites guiding uniform deposition for stable magnesium metal anodes

[J]. Nano Lett., 2022, 22: 9138

[本文引用: 3]

Li Y J, Yang G L, Zhang C, et al.

Grain-boundary-rich triphasic artificial hybrid interphase toward practical magnesium metal anodes

[J]. Adv. Funct. Mater., 2022, 33: 2210639

[本文引用: 3]

Chen T N, Sai Gautam G, Canepa P.

Ionic transport in potential coating materials for Mg batteries

[J]. Chem. Mater., 2019, 31: 8087

DOI      [本文引用: 4]

A major bottleneck for the development of Mg batteries is the identification of liquid electrolytes that are simultaneously compatible with the Mg-metal anode and high-voltage cathodes. One strategy to widen the stability windows of current nonaqueous electrolytes is to introduce protective coating materials at the electrodes, where coating materials are required to exhibit swift Mg transport. In this work, we use a combination of first-principles calculations and ion-transport theory to evaluate the migration barriers for nearly 27 Mg-containing binary, ternary, and quaternary compounds spanning a wide chemical space. Combining mobility, electronic band gaps, and stability requirements, we identify MgSiN2, MgI2, MgBr2, MgSe, and MgS as potential coating materials against the highly reductive Mg metal anode, and we find MgAl2O4 and Mg(PO3)(2) to be promising materials against high-voltage oxide cathodes (up to similar to 3 V).

Liu Z, Li Y S, Ji Y Z, et al.

Dendrite-free lithium based on lessons learned from lithium and magnesium electrodeposition morphology simulations

[J]. Cell Rep. Phys. Sci., 2021, 2: 100294

[本文引用: 3]

Zhang S X, Cheng M X, Zhang P, et al.

Insights into the stability of magnesium borate salts for rechargeable magnesium batteries from AIMD simulations

[J]. Chem. Commun., 2022, 58: 11969

[本文引用: 3]

Song Z H, Zhang Z H, Du A B, et al.

Uniform magnesium electrodeposition via synergistic coupling of current homogenization, geometric confinement, and chemisorption effect

[J]. Adv. Mater., 2021, 33: 2100224

[本文引用: 3]

Liang Y L, Feng R J, Yang S Q, et al.

Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode

[J]. Adv. Mater., 2011, 23: 640

[本文引用: 4]

Maddegalla A, Mukherjee A, Blázquez J A, et al.

AZ31 magnesium alloy foils as thin anodes for rechargeable magnesium batteries

[J]. ChemSusChem, 2021, 14: 4690

DOI      PMID      [本文引用: 4]

In recent decades rechargeable Mg batteries (RMB) technologies have attracted much attention because the use of thin Mg foils anodes may enable to develop high energy density batteries.  One of the most critical challenges for devolving  RMB is finding  suitable  electrolyte solutions that enable efficient and reversible Mg cells operation. Most RMB studies concentrate on the development of novel electrolyte systems, while only few studies have focused on the practical feasibility of using pure metallic Mg as the anode material. Pure Mg metal anodes have been demonstrated to be useful in studying the fundamentals of nonaqueous Mg electrochemistry. However, pure Mg metal may not be suitable for mass production of ultrathin foils (< 100 microns) due to its limited ductility. The metals industry overcomes this problem by using ductile Mg alloys. We demonstrate herein the feasibility of processing ultrathin Mg anodes in electrochemical cells by using AZ31 Mg alloys (3% Al; 1% Zn). Thin film Mg AZ31 anodes present reversible Mg dissolution and deposition behavior in complex ethereal Mg electrolytes solutions that is comparable to that of pure Mg foils. Moreover, we demonstrated that secondary Mg battery prototypes comprising ultrathin AZ31 Mg alloy  anodes (≈ 25 µm thick) and Mg x Mo 6 S 8 Chevrel phase cathodes exhibit cycling performance that is equal to that of similar cells containing thicker pure Mg foil anodes. The possibility of using of ultrathin processable Mg metal anodes is an important step in the realization of rechargeable Mg batteries.© 2021 Wiley-VCH GmbH.

Mandai T, Somekawa H.

Metallurgical approach to enhance the electrochemical activity of magnesium anodes for magnesium rechargeable batteries

[J]. Chem. Commun., 2020, 56: 12122

[本文引用: 1]

Liu H, Tan S S, Wang Z T, et al.

Binary Mg-1 at%Gd alloy anode for high-performance rechargeable magnesium batteries

[J]. ChemSusChem, 2024, 17: e202301589

[本文引用: 5]

Liu H.

Effect of alloying elements on electrochemical performance of magnesium anode in magnesium ion battery

[D]. Chongqing: Chongqing University, 2022

[本文引用: 1]

刘 晗.

合金元素对镁离子电池镁负极电化学性能的影响

[D]. 重庆: 重庆大学, 2022

[本文引用: 1]

Zhang B X, Yue J L, Wang D, et al.

Alloy alleviating galvanic corrosion enables uniform Mg deposition with long cycle life

[J]. ACS Energy Lett., 2024, 9: 1771

[本文引用: 3]

He G, Li Q W, Shen Y L, et al.

Flexible amalgam film enables stable lithium metal anodes with high capacities

[J]. Angew. Chem. Int. Ed., 2019, 58: 18466

DOI      PMID      [本文引用: 1]

Dendrite formation is a critical challenge for the applications of lithium (Li) metal anodes. In this work a new strategy is demonstrated to address this issue by fabricating an Li amalgam film on its surface. This protective film serves as a flexible buffer that affords repeated Li plating/stripping. In symmetric cells, the protected Li electrodes exhibit stable cycling over 750 hours at a high plating current and capacity of 8 mA cm and 8 mAh cm, respectively. Coupled with high-loading cathodes (ca. 12 mg cm ) such as LiFePO and LiNi Co Mn O, the protected hybrid anodes demonstrate significantly improved cell stability, indicating its reliability for practical development of Li metal batteries. Interfacial analyses reveal a unique plating-alloying synergistic function of the protective film, where Li beneath the film is actively involved in the electrode reactions upon cycling. Lithium amalgams enrich the alloy anode family and provide new perspectives for the rational design of dendrite-free anodes.© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Liu J J, Hu H, Wu T Q, et al.

Tailoring the microstructure of Mg-Al-Sn-RE alloy via friction stir processing and the impact on its electrochemical discharge behaviour as the anode for Mg-air battery

[J]. J. Magnes. Alloy., 2024, 12: 1554

Huang X, Dai Q W, Xiang Q, et al.

Microstructure design of advanced magnesium-air battery anodes

[J]. J. Magnes. Alloy., 2024, 12: 443

[本文引用: 1]

Wei C L, Tan L W, Zhang Y C, et al.

Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries

[J]. Energy Storage Mater., 2022, 48: 447

[本文引用: 4]

Song C, Yuan Y, Gu D C, et al.

The evaluation of Mg-Ga compounds as electrode materials for Mg-ion batteries via ab initio simulation

[J]. J. Electrochem. Soc., 2021, 168: 110539

[本文引用: 1]

Pechberty C, Hagopian A, Ledeuil J B, et al.

Alloying electrode coatings towards better magnesium batteries

[J]. J. Mater. Chem., 2022, 10A: 12104

[本文引用: 4]

Zhao Y M, Du A B, Dong S M, et al.

A bismuth-based protective layer for magnesium metal anode in noncorrosive electrolytes

[J]. ACS Energy Lett., 2021, 6: 2594

[本文引用: 1]

Zhuang Y C, Wu D Z, Wang F, et al.

Tailoring a hybrid functional layer for Mg metal anodes in conventional electrolytes with a low overpotential

[J]. ACS Appl. Mater. Interfaces, 2022, 14: 47605

[本文引用: 4]

Lv R J, Guan X Z, Zhang J H, et al.

Enabling Mg metal anodes rechargeable in conventional electrolytes by fast ionic transport interphase

[J]. Natl. Sci. Rev., 2020, 7: 333

DOI      PMID      [本文引用: 1]

Rechargeable magnesium batteries have received extensive attention as the Mg anodes possess twice the volumetric capacity of their lithium counterparts and are dendrite-free. However, Mg anodes suffer from surface passivation film in most glyme-based conventional electrolytes, leading to irreversible plating/stripping behavior of Mg. Here we report a facile and safe method to obtain a modified Mg metal anode with a Sn-based artificial layer via ion-exchange and alloying reactions. In the artificial coating layer, MgSn alloy composites offer a channel for fast ion transport and insulating MgCl/SnCl bestows the necessary potential gradient to prevent deposition on the surface. Significant improved ion conductivity of the solid electrolyte interfaces and decreased overpotential of Mg symmetric cells in Mg(TFSI)/DME electrolyte are obtained. The coated Mg anodes can sustain a stable plating/stripping process over 4000 cycles at a high current density of 6 mA cm. This finding provides an avenue to facilitate fast ion diffusion kinetics of Mg metal anodes in conventional electrolytes.© The Author(s) 2019. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.

Yang B P, Xia L Y, Li R, et al.

Superior plating/stripping performance through constructing an artificial interphase layer on metallic Mg anode

[J]. J. Mater. Sci. Technol., 2023, 157: 154

DOI      [本文引用: 1]

Rechargeable magnesium batteries (RMBs) have attracted tremendous attention in energy storage applications in term of high abundance, high specific capacity and remarkable safety of metallic magnesium (Mg) anode. However, a serious passivation of Mg anode in the conventional electrolytes leads to extremely poor plating/stripping performance, further hindering its applications. Herein, we propose a convenient method to construct an artificial interphase layer on Mg anode by substitution and alloying reactions between SbCl<sub>3</sub> and Mg. This Sb-based artificial interphase layer containing mainly MgCl<sub>2</sub> and Mg<sub>3</sub>Sb<sub>2</sub> endows the significantly improved interfacial kinetics and electrochemical performance of Mg anode. The overpotential of Mg plating/stripping in conventional Mg(TFSI)<sub>2</sub>/DME electrolytes is vastly reduced from over 2 V to 0.25-0.3 V. Combining experiments and calculations, we demonstrate that under the uniform distribution of MgCl<sub>2</sub> and Mg<sub>3</sub>Sb<sub>2</sub>, an electric field with a favorable potential gradient is formed on the anode surface, which enables swift Mg<sup>2+</sup> migration. Meanwhile, this layer can inhibit the decomposition of electrolytes to protect anode. This work provides an in-depth exploration of the artificial solid-electrolyte interface (SEI) construction, and a more achievable and safe path to realize the application of metallic Mg anode in RMBs.

Wang Y Q, Cheng F L, Huang Y Z, et al.

Vertically-oriented growth of MgMOF layer via heteroepitaxial guidance for highly stable magnesium-metal anode

[J]. Energy Storage Mater., 2023, 61: 102911

[本文引用: 5]

Zhang Y J, Li J, Zhao W Y, et al.

Defect-free metal-organic framework membrane for precise ion/solvent separation toward highly stable magnesium metal anode

[J]. Adv. Mater., 2022, 34: 2108114

[本文引用: 1]

Li C, Shyamsunder A, Key B, et al.

Stabilizing magnesium plating by a low-cost inorganic surface membrane for high-voltage and high-power Mg batteries

[J]. Joule, 2023, 7: 2798

[本文引用: 4]

Son S B, Gao T, Harvey S P, et al.

An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes

[J]. Nat. Chem., 2018, 10: 532

[本文引用: 1]

Wen T T, Qu B H, Tan S S, et al.

Rational design of artificial interphase buffer layer with 3D porous channel for uniform deposition in magnesium metal anodes

[J]. Energy Storage Mater., 2023, 55: 816

[本文引用: 5]

Wen T T, Tan S S, Li R, et al.

Large-scale integration of the ion-reinforced phytic acid layer stabilizing magnesium metal anode

[J]. ACS Nano, 2024, 18: 11740

[本文引用: 5]

/