可充电镁电池负极材料及界面化学的研究进展
文恬恬, 岳继礼, 熊方宇, 袁媛, 黄光胜, 王敬丰, 潘复生

Research Progress on Anode Materials and Interfacial Chemistry for Rechargeable Magnesium Batteries
WEN Tiantian, YUE Jili, XIONG Fangyu, YUAN Yuan, HUANG Guangsheng, WANG Jingfeng, PAN Fusheng
图4 不均匀Mg沉积/剥离[55]:Mg沉积过程示意图及扩散限制理论和成核理论的标准参数(以全苯基络合物(APC)电解液为例);扩散控制缓冲区示意图;10 mA/cm2电流密度下Mg在APC电解液中的沉积形貌;5 mA/cm2电流密度下Mg在玻璃纤维隔膜中的沉积行为
Fig.4 Uneven Mg plating/stripping mechanism[55]
(a) schematic of Mg electroplating progress and the standard parameters to guide the diffusion limited theory and the nucleation theory (take the all phenyl complex (APC) electrolyte as an example) (rcrit—critical radius, ηn—overpotential, γ—surface energy, F—Faraday's constant, Vm—molar volume, τSand—Sand's time, iL—limited current, C0—salt concentration in bulk electrolyte, Dambp—ambipolar diffusion coefficient, n—electron transfer number, A—electrode area, L—thickness, μa—anion transference number, μc—cationic transference number, Dc—self-diffusion coefficient of individual cation, Da—self-diffusion coefficient of individual anion, t+—cationic transference number. THF—tetrahydrofuran)
(b) diagram of diffusion-control buffer zone
(c) cross sectional SEM image and schematic of Mg deposit at 10 mA/cm2 in APC electrolyte
(d) Mg plating in glass fiber separator at 5 mA/cm2