金属学报, 2024, 60(10): 1362-1378 DOI: 10.11900/0412.1961.2024.00188

综述

相变存储器材料设计与多尺度模拟的研究进展

沈雪阳, 褚瑞轩, 蒋宜辉, 张伟,

西安交通大学 金属材料强度国家重点实验室 材料创新设计中心 西安 710049

Progress on Materials Design and Multiscale Simulations for Phase-Change Memory

SHEN Xueyang, CHU Ruixuan, JIANG Yihui, ZHANG Wei,

Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China

通讯作者: 张 伟,wzhang0@mail.xjtu.edu.cn,主要从事相变存储与类脑计算方面的研究

收稿日期: 2024-06-03   修回日期: 2024-07-05  

基金资助: 国家重点研发计划项目(2023YFB4404500)
国家自然科学基金项目(62374131)

Corresponding authors: ZHANG Wei, professor, Tel:(029)82664839, E-mail:wzhang0@mail.xjtu.edu.cn

Received: 2024-06-03   Revised: 2024-07-05  

Fund supported: National Key Research and Development Program of China(2023YFB4404500)
National Natural Science Foundation of China(62374131)

作者简介 About authors

沈雪阳,女,1998年生,博士生

摘要

大数据时代人工智能、5G、云计算等先进技术对数据存储与处理的需求急剧上升,而新型非易失性存储材料与器件的研发则为大幅提升算力提供了契机。同时,人工智能技术驱动的科学研究范式也为进一步提升存储器件性能提供了新的研发模式。本文聚焦于相变存储材料与器件在计算与数据驱动下的研究进展,详细论述了大尺度第一性原理分子动力学、新材料设计与高通量材料筛选、多尺度模拟与机器学习势开发等先进材料计算方法在相变存储材料研究中的具体应用,并展望了相变存储技术发展所面临的机遇与挑战。

关键词: 相变存储材料; 第一性原理; 高通量计算; 多尺度模拟; 机器学习势

Abstract

In the era of big data, the demand for data storage and processing is increasing because of advanced technologies such as artificial intelligence (AI), 5G, and cloud computing. Emerging non-volatile memory materials and devices present remarkable opportunities to enhance computing capacity. Concurrently, the AI-driven scientific research paradigm introduces a new mode for improving device performance. This review focuses on recent advances in phase-change memory materials and devices, emphasizing computational- and data-driven methodologies. Phase-change materials (PCMs) operate based on rapid and reversible phase transitions between amorphous and crystalline states, where differences in electrical and optical properties are used to encode digital information. These materials typically consist of multicomponent alloys, with phase transitions involving melting, quenching, crystallization, glass relaxation, and crystal-crystal structural changes. To achieve a detailed atomistic understanding of PCMs, large-scale density functional theory (DFT) and DFT-based ab initio molecular dynamics (AIMD) simulations are essential. Comparisons between DFT/AIMD simulations and experimental results have clarified many fundamental aspects of PCM. The first part of this review provides an overview of the history and progress in large-scale ab initio simulations of PCMs. With atomic-scale knowledge, rational materials design becomes feasible. The second part explores methods for developing new PCMs with specific properties, such as accelerating crystallization at elevated temperatures while maintaining non-volatile characteristics at room temperature. High-throughput screening's role in discovering new phase change alloys is also discussed. In the third part, we examine multiscale and cross-scale simulations of PCM for various optical and electronic phase change applications. By computing the dielectric functions of PCM during the amorphous-to-crystalline transition, we can track changes in the refractive index and extinction coefficient across visible and infrared spectra over time. These DFT-computed parameters inform coarse-grained device simulations using finite-difference time-domain (FDTD) or finite element method (FEM). Based on these multiscale simulations, we offer optimization guidelines for non-volatile color display and photonic waveguide devices. The machine learning potentials address some performance gaps between the DFT/AIMD and FEM/FDTD calculations. Machine-learning-driven molecular dynamics (MLMD) simulations serve as cross-scale simulations, with recent developments including neural networks, graph convolutional neural networks, and Gaussian approximation potentials. We discuss the role of MLMD in enabling device-scale atomistic simulations, facilitating device design and optimization with atomic-scale information. Finally, we outline future opportunities and challenges in theoretical PCM research. With ongoing AI-driven fundamental research, we anticipate the commercialization of high-performance phase change memory, neuroinspired computing, and reconfigurable nanophotonic devices, which will, in turn, foster the development of more advanced theoretical tools for research.

Keywords: phase-change memory material; first principles; high-throughput screening; multiscale simulation; machine-learning potential

PDF (4227KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

沈雪阳, 褚瑞轩, 蒋宜辉, 张伟. 相变存储器材料设计与多尺度模拟的研究进展[J]. 金属学报, 2024, 60(10): 1362-1378 DOI:10.11900/0412.1961.2024.00188

SHEN Xueyang, CHU Ruixuan, JIANG Yihui, ZHANG Wei. Progress on Materials Design and Multiscale Simulations for Phase-Change Memory[J]. Acta Metallurgica Sinica, 2024, 60(10): 1362-1378 DOI:10.11900/0412.1961.2024.00188

人工智能(AI)、5G、大数据等先进技术的快速发展对数据的高效计算与存储提出了更高的要求。新型非易失性存储材料,如相变存储材料[1~5]、阻变氧化物[6~8]、自旋磁存储材料[9,10]、铁电材料[11,12]等,为开发兼具快速读写与持久存储能力的非易失性存储器(non-volatile memory,NVM)及存算一体化(in-memory computing,IMC)新计算架构带来了新的契机[13~17]。其中,基于硫族相变材料(phase-change materials,PCM)的相变存储器已实现大规模量产,包括高密度三维堆叠持久内存芯片[18,19]、高稳定嵌入式存储器[20~22]等。此外,学界与业界也先后报道了基于相变材料的存算一体化雏形芯片[23~25]、光计算、光显示以及可重构超表面等光电子器件的应用[26~33]。Intel和Micron Technology联合发布的三维堆叠存储芯片已于2018年作为存储类器件进入商业市场。它基于三维交叉阵列结构,由作为存储单元的PCM以及控制电流通断的选通管(ovonic threshold switching,OTS)材料构成[18,19],极大地提高了存储密度和效率(图1a[3])。相变存储材料利用其晶体相和非晶相之间巨大的电学或光学性质差异实现数据存储[34]。以典型的Ge2Sb2Te5 (GST)相变材料为例,当对其非晶相施加一个脉宽较大且强度适中的电压或激光脉冲时,产生的Joule热将诱导材料逐步升温至结晶温度(500~600 K)以上,发生快速结晶化,完成数据的写入,即SET过程;当对其晶相施加脉宽较窄且强度很高的电压或激光脉冲时,短时间内大量的Joule热使晶体相迅速升温至熔点(约900 K)以上,随后材料熔化并冷却得到非晶相,实现数据的擦除,即RESET过程(图1b[34])。

图1

图1   相变存储材料的商业化产品、基本工作原理及人工智能(AI)驱动的新材料研究[3,34,38]

Fig.1   Commercialized product and working principle of phase-change materials, and artificial intelligence (AI)-driven materials discovery

(a) 3D crosspoint memory[3] (b) principle of phase-change materials[34] (c) AI-driven materials discovery[38]


随着材料基因工程的推进,以高性能材料计算软件与平台、AI技术为驱动的科学研究(AI for science)大幅优化了新材料开发的流程与成本[35~39]。材料基因工程旨在通过高通量计算来构建材料数据库,并采用数据驱动的方法来克服材料研发中遇到的挑战[39,40]。AI与材料基因工程的深度融合推动了新材料研发方式的革新,由传统的实验“试错法”转变为材料基因工程框架下集高通量筛选、材料基因组数据挖掘与构建、材料反向设计为一体的AI驱动的科学研究范式(图1c[38]),在高熵合金[41,42]、磁性拓扑材料[43,44]、热电材料[45]、塑性层状半导体材料[46,47]等先进材料领域得到了广泛应用。目前,基于密度泛函理论(density functional theory,DFT)计算的材料数据库、高通量自动化智能计算软件等平台发展迅速,如Materials Project[48]、AFLOW[49]和ALKEMIE[50]等,为新材料探索发现带来了极大便利。研究人员可根据不同应用需求,有针对性地筛选与挖掘具有特定属性的材料,并根据计算结果开展进一步的实验制备与验证,大幅缩短了新材料的研发周期。

由于相变存储应用涉及到非晶与晶体之间的结构相变以及光、电、热耦合等多学科交叉问题,必须借助先进计算以及AI驱动带来的优势开展深入研究。本文聚焦该方面的研究进展,详细论述大尺度第一性原理分子动力学、高通量材料筛选与材料设计、多尺度模拟与机器学习势开发等先进材料计算方法在相变存储材料研发中的具体应用,并展望相变存储与存算一体技术面临的机遇与挑战。

1 大尺度第一性原理计算

硫族相变材料于19世纪60年代被首次报道,在19世纪90年代被用于可擦写的光存储产品如rewritable CD,DVD,Blu-ray Disc等[51,52]。典型的硫族相变材料GST在纳秒级快速结晶过程中形成立方相结构,其中一个子晶格由Te原子占据,另一个子晶格包含随机分布的Ge原子、Sb原子和大量空位[52]。其最小结构单元为Ge/Sb原子与Te原子交替形成的四元环,被称为ABAB (A: Ge/Sb, B: Te)环。而GST的非晶缺乏长程有序性且非晶网络结构十分复杂,此外非晶结构随时间延长发生自发弛豫演化,难以通过单一实验研究对其性质机理从微观角度做出解释。基于DFT的第一性原理分子动力学(ab initio molecular dynamics,AIMD)模拟方法能够有效模拟材料动态过程中的微观结构变化,揭示材料结构相变机理。2007年,Caravati等[53]和Akola等[54]分别首次独立报道了GST非晶态的AIMD计算,使用熔融淬火方法获得了非晶锗锑碲(a-GST)和非晶锗碲(a-GeTe)模型,模型包括约200个原子。具体而言,先将模型原子位置在超高温下随机化,再降温至材料熔点以上保温约30 ps,模拟其液态结构特性,随后以1012 K/s的速率逐步降温至300 K并保温30 ps,从而获得非晶模型。如图2a[53]所示,模拟得到的a-GST的X射线散射因子S(Q)与实验结果一致,证明AIMD的模拟结果可信[53]。AIMD结果表明a-GST中存在着大量以Ge、Te原子为中心的缺陷八面体结构,而且包含大量的四元基环(图2b[53]),其中超过80%为ABAB[54]。该现象与基于同步辐射X射线衍射数据的逆向Monte Carlo模拟(reverse Monte Carlo simulations)得到的结果一致[55]ABAB环与立方相中的主要构成单元相似,被认为是相变材料结晶形核过程的重要结构基元。由于SET过程中产生的Joule热可使局部温度达到300℃以上,但在该温度下ABAB环会快速地断开再重联,需要经过较长的孕育期才能够形成稳定的临界晶核(图2c[56]),导致GST存储器件需要至少10 ns才能完成SET操作[56]

图2

图2   Ge2Sb2Te5相变合金非晶相的第一性原理分子动力学(AIMD)建模[53,56]

Fig.2   Ab initio molecular dynamic (AIMD) modeling of amorphous Ge2Sb2Te5 phase-change material (a, b) structure factor (a) and ring lengths (b) distribution calculated at 300 K[53] ( Q —scattering vector, S( Q )—X-ray scattering factor, a-GST—amorphous GST, ABABABAB rings, A: Ge/Sb, B: Te) (c) evolution of ABAB rings calculated at about 600 K[56]


通过AIMD模拟Ge-Sb-Te合金的结晶化过程能够深入揭示快速形核结晶过程原子结构的微观演化。但是受到有限尺寸效应的限制,使用较小模型计算的结晶速率与实验测量值仍然存在一定差距,如在600 K下,包含180个原子的GST模型的结晶速率约为5 m/s,远大于通过超快差示扫描量热实验得到的结晶速率,约为1 m/s[57,58]。当模拟体系的尺寸增大至460原子时,结晶速率约为1.2 m/s[59,60]。Xu等[61]对Ge1Sb2Te4合金进行了大尺度的AIMD计算以研究其界面生长结晶过程,模型包含144个Ge原子、288个Sb原子、576个Te原子。该模型的初始结构为立方相,在AIMD熔化快冷过程中保持2个(111)晶面原子层固定不变,从而得到包含晶体界面的非晶模型,再将该模型放置在约600 K下进行后续的结晶化模拟,经过550 ps保温后完成结晶。图3a[61]给出了Ge1Sb2Te4结晶化的若干瞬间,利用序参数 q4dot区分已结晶与未结晶的原子,对未结晶部分的原子进行了虚化处理。q4dot是基于相邻原子之间球谐函数的序参数的点积,可以有效地量化体系的结晶程度,区分类晶态与类非晶态环境[62]。对于Ge-Sb-Te体系,认为q4dot大于0.45的原子处于晶态环境[59]。另一种更为通用的方法是使用k¯ 参数量化描述结晶化过程。k¯ 参数又被称为核函数,它通过原子位置平滑重叠(smooth overlap of atomic positions,SOAP)方法,将2种环境中指定中心原子截断半径范围内的所有原子通过Gaussian函数平滑化,再将环境内的原子密度以径向函数与球谐函数基组展开,并以位置与角度为自变量积分,最终将作为参考的标准结构与目标体系中原子环境相似度量化为一个介于0与1之间的值,当 k¯ 值越接近1时2种原子环境越相似,而该值越接近0时代表2种原子环境的局部结构存在较大差异[63]。该方法对体系的化学成分无先验要求,并且对参照结构的选择非常灵活。例如使用理想的Ge/Sb/空位随机分布的立方结构对Ge1Sb2Te4结晶化过程做k¯ 量化处理,并通过颜色映射区分结晶与未结晶原子(图3b[61])。由于形核过程具有随机性,在大量稳定的晶核尚未形成之前,Ge1Sb2Te4模型便从晶体基底界面沿[111]方向生长,且重结晶结构中存在一定数量k¯值极低的反位缺陷。图3c[61]展示了结晶化模拟中使用2种参数计算的Ge1Sb2Te4的结晶区域体积、晶体-非晶界面面积、晶体生长速率随时间变化的曲线。使用q4dot计算的Ge1Sb2Te4晶体生长速率约为1.5 m/s,使用k¯计算的晶体生长速率估计值为1.2 m/s,2者与实验测得GST约1.0 m/s的生长速率接近[57]

图3

图3   包含1008个原子Ge1Sb2Te4模型在约600 K下的AIMD结晶化模拟[61]

Fig.3   AIMD crystallization simulations of a 1008-atom Ge1Sb2Te4 model at about 600 K[61]

(a) snapshots of the crystallization process identified by q4dot

(b) snapshots of the crystallization process identified by smooth overlap of atomic positions (SOAP) kernel k¯ (k¯—SOAP kernel function)

(c) structural analyses of the crystallization process (V—volume of the crystalline region, S—area of the interface between amorphous and crystalline regions, Vg—crystal growth velocity, q4dot—local order parameter)


大尺度AIMD研究自2007年开始,研究的非晶PCM模型大小从数百原子提升至目前的上千原子[61],模拟时间从数十皮秒提升至数纳秒[64],在非晶结构弛豫[65]、熔化[66]与液态动力学行为[67]、结晶化机理[59~61,68~70]、空位有序化[71,72]等方面提供了关键的理论性支撑。虽然AIMD结合DFT能够给出有价值的机理性解释,但是受制于该类计算的复杂性,其计算成本随原子数的增加呈指数型上升。即便使用最为先进的超算集群,计算规模也难以有效提升。例如,上述Xu等[61]的工作使用了数百个中央处理器 (center processing unit,CPU)计算核心进行了长达半年之久的计算,也仅完成了1008个原子550 ps的AIMD计算。为促进相变存储器件应用发展,研究人员提出了多种理论研究方案,主要包括以下3种:(1) 利用DFT/AIMD开展高通量材料筛选与设计方面工作,以新材料的开发突破器件性能瓶颈;(2) 将DFT计算得到的物理性能作为输入参数,开展粗粒化器件仿真研究,指导器件研发;(3) 基于DFT/AIMD构建结构数据集,开发兼顾计算效率与计算精度的机器学习势函数,实现相变存储器件的原子尺度模拟与设计。

2 高通量材料设计与材料筛选

2.1 相变合金的材料设计

为了进一步提升相变存储器的SET速度,Rao等[56]利用高通量筛选,针对相变材料本征形核特性进行设计。如图4a[56]所示,锑碲(Sb2Te3)合金在快速结晶过程中形成亚稳态的立方相,该晶相结构由嵌套的fcc构成,其中Sb原子与空位以2∶1的比例随机占据一套子格点,Te原子占据另一套完整的子格点。与Ge-Sb-Te合金相比,Sb-Te合金的结晶速率较快,但非晶热稳定性较差[73]。通过合适的指标进行高通量筛选可以获得与Sb-Te合金结构匹配的掺杂元素,一方面掺杂元素形成的结构单元需要与结晶前驱体结构类似,另一方面需要通过掺杂引入高强度的化学键来提升ABAB四元环的高温稳定性,从而降低形核随机性,加速结晶化过程。对过渡族金属碲化物的筛选结果如图4b[56]所示,首先以配位数、键长与熔化温度作为指标,筛选得到了钪碲(Sc2Te3)、钇碲(YTe)、锰碲(MnTe)、锌碲(ZnTe)、镉碲(CdTe)、汞碲(HgTe) 6种候选掺杂合金。DFT计算显示后4种合金的结合能与Sb-Te合金相当,难以大幅提升化学键的高温稳定性。对于Y掺杂而言,非晶中Y原子无法保持八面体形态,可较好地提升非晶热稳定性,但对于SET速度的提升与Sc掺杂相比略显不足[74~76]。因此,Sc元素被筛选为最合适的掺杂元素。AIMD计算表明Sc0.2Sb2Te3 (SST)非晶态相中存在大量的ABAB四元环,且每个环中至少具有1个Sc原子。与a-GST中的Ge/Sb与Te元素交替组成的四元环相比,Sc-Te四元环在600 K下不会随着热涨落断裂重组。若将1个富Sc的结晶预核心放置在非晶中,SST便可快速完成晶体生长。图4c[56]展示了一个包含428个原子的SST模型的结晶化过程,结晶化时间可缩短为约600 ps。通过制备结构一致的T型Ge-Sb-Te、Sc-Sb-Te相变存储器件,Rao等[56]证实了Sc-Sb-Te器件的SET时间可大幅缩减,并突破1 ns的存储速度极限,达到约700 ps的缓存速度级别。而由于Sc元素的引入,体系整体的黏滞系数被提升,随着温度降低,SST动力学属性由脆液相转为了强液相[77],大幅抑制了低温下的界面生长能力,从而获得了较好的非易失特性。其10年失效温度达到了87℃,与GST合金82℃的失效温度相当[56]。后续多个团队围绕Sc-Sb-Te相变机制、材料制备、成分优化开展了一系列计算与实验工作[78~82],为发展缓存级相变存储器件奠定了基础。此外,基于材料设计思路,Ding等[83]发展了TiTe2/Sb2Te3异质结合金,实现了器件电阻漂移的大幅降低并提升器件操作的一致性,Yang等[84]利用氧掺杂加剧了Ge-Sb合金自发分相行为,开发了“导电桥”型相变存储器,将器件RESET功耗降至数十飞焦[84,85]

图4

图4   超快形核Sc0.2Sb2Te3相变合金的设计与器件验证[56]

Fig.4   Design of Sc0.2Sb2Te3 phase-change alloy with ultrafast nucleation rate and device validation[56]

(a) structure of rocksalt Sb2Te3 (Ecoh—cohesive energy, a—cell length, the yellow spheres represent the sublattice occupied by Sb atoms and vacancies with a ratio of 2∶1, the blue spheres represent the sublattice occupied by Te atoms)

(b) materials screening (CN—coordination number)

(c) crystallization process

(d) SET speed (GST—Ge2Sb2Te5, SST—Sc0.2Sb2Te3. Inset shows the schematic of the T type phase change device, TEC—top electrode contact, BEC—bottom electrode contact, ϕ—diameter of BEC)


2.2 新型相变合金的筛选与研发

为了寻找更多相变存储材料,Liu等[86]利用高通量筛选方法对Materials Project[48]数据库中的12万余个无机晶体结构进行了筛选,筛选标准涵盖了4个不同的层次:首先,新型相变材料的成分应与以往研究中的相变材料类似,主要由四、五、六主族元素组成;其次,相变材料的带隙一般较窄,因此目标材料的带隙值需要低于1 eV;再者,由于相变材料中特殊的超价键(metavalent bonding,MVB)的成键机制[87~89],相邻原子的p电子轨道倾向于形成线性的p-p键,因而类八面体局部结构也被作为核心筛选判据;最后,筛选数据库中化合物与同化学成分下分解为稳定相的材料的能量差(energy above hull,ΔEhull)小于100 meV/atom的晶体,得出热力学稳定的158种候选材料。候选材料的元素组成除第一层筛选标准中的四、五、六主族元素外,还包括少量其他主族元素如In、Li、Na等,以及过渡族元素如Ti、Ag、Cr等。进一步计算候选材料的Born有效电荷、结合能、键角偏离度并与经典相变材料相关性质进行比较,最终筛选得到52种新型相变材料,其中包含近20种在相变领域研究较少的化合物,如锰铋碲(MnBi2Te4)、铊铋碲(TlBiTe2)、镉铅硒(CdPb3Se4)等。后续的AIMD计算表明这几种代表性的新型相变材料的非晶中具有与Ge-Sb-Te合金中类似的ABAB环,具有快速结晶的潜力,且非晶相与晶相间存在一定的光学性质差异。该工作是高通量筛选方法成功指导新型相变存储材料设计的范例[86]

Xu等[90]采用了元素替换方法与高通量计算扩大了相变存储材料的研究范围。以Ge1Sb2Te4与Sb2Te3立方相结构为例,该结构中具有大量的空位,占据所有晶格位置的1/8和1/6,而这些大量空位的随机分布会产生Anderson绝缘行为[90~92]。由于该类DFT计算中涉及超胞与无序,模型的原子数可达数百个,甚至数千个。因此,未被收录于常规的DFT材料数据库中。Xu等[90]建立了60种IV1V2VI4与V2VI3立方相结构,其中IV族包括Si、Ge、Sn、Pb元素,V族包括P、As、Sb、Bi元素,VI族包括S、Se、Te元素。使用DFT计算结构弛豫前后晶格位点的平均位移与最大位移,如图5a[90]所示,这60种化合物主要集中在2大区域,以最大位移0.07 nm作为临界值,超过该值时晶体结构在AIMD升温模拟中无法以立方相形式稳定存在,最终筛选得到47种可形成立方相的二元及三元硫族化合物。该筛选结果可以使用化合物原子半径比例与sp3杂化程度2种指标解释(图5b[90])。原子半径比例为立方相结构中占据2种fcc子格点的元素原子半径之比;sp3杂化程度则是一种基于轨道的指标,通过将态密度投影到混合能级上的积分密度占总的态密度积分的百分比来量化sp3轨道的杂化程度,sp3杂化程度越高,化合物的局部结构越偏向形成四面体而非立方相中的八面体[93]。当2种指标都较大时,化合物弛豫后难以保持稳定的立方相,结构已经不再具有长程有序性。如图5c[90]所示,代表弛豫后原子位点与理想位点间距离较小,距离次之及距离最大的原子结构,分别为锗锑碲(Ge1Sb2Te4)、锗磷硒(Ge1P2Se4)与硅砷硫(Si1As2S4)。其中,Si1As2S4弛豫前后的最大位移超过了0.2 nm,弛豫后的结构已经自发形成非晶相。该方法能够区分结构稳定和结构自发紊乱的Anderson绝缘硫族化合物,这些自发形成非晶的硫族化合物具有作为OTS材料的潜力,其电学性质有待进一步的探索。

图5

图5   无序影响的Anderson绝缘硫族化合物高通量筛选及稳定性分析[90]

Fig.5   High-throughput screening and stability analysis of disorder-induced Anderson-insulating chalcogenide[90]

(a) density functional theory (DFT) screening and atomic displacement for the alloys (Max.—maximum, Avg.—average)

(b) structure stability analyses

(c) relaxed models of the alloys


由于相变存储材料在工程化应用时需要考虑众多参数,包括非晶热稳定性、结晶化速度、操作功耗、循环寿命、电阻窗口、电阻漂移、抗氧化程度、黏附力、相分离趋势、可否利用磁控溅射方法实现大规模制备、原材料成本等,因此,由上述材料筛选与设计方法给出的一系列新材料还需要通过系统性的工程化评估与验证,才能促进相变存储芯片产业化发展。无论如何,上述基础研究已为理解相变材料本征属性提供了坚实基础,并实现了特定器件参数的准确调控。接下来,将根据具体的器件应用场景,讨论相变材料理论研究如何促进器件应用的进一步发展。

3 相变存储合金多尺度与跨尺度模拟的研究进展

如上所述,由于第一性原理分子动力学模拟的模型尺寸与计算成本限制,无法在保证量子力学计算精度的同时满足器件尺度计算的需求,难以预测评估相变材料在实际应用中的表现。尽管单一计算工具很难实现从微观尺度材料结构到宏观尺度器件应用上的仿真,但是先进仿真模拟软件提供了多场耦合表征宏观性能的手段。一方面,通过参数传递,如将微观的DFT计算结果与有限元(finite element method,FEM)、时域有限差分(finite-difference time-domain,FDTD)等仿真方法进行耦合,可实现材料在器件尺度下宏观性质的模拟,并为器件应用提供理论指导[94~96],该方式可称为“多尺度模拟”。另一方面,近年来基于机器学习势函数的分子动力学方法(machine learning molecular dynamics,MLMD)能够在保持量子力学计算精度的前提下,跨越传统AIMD计算中时间尺度与空间尺度的局限性[97~99],实现器件尺度的原子计算,进而辅助相变存储器件设计[100],该类计算工作可称为“跨尺度模拟”。

3.1 相变合金的多尺度模拟

PCM在晶相与非晶相快速相变时伴随着显著的光学性质差异,包括反射率、透射率、折射率、光相位等。这些特性使其在片上光存储、光计算、超高分辨显示器、可重构超表面等光学应用中拥有广阔的前景[30~32,101~105]。由于PCM相变过程发生在纳秒级别,而且PCM在快速结晶后通常会形成亚稳态,与长时间退火处理得到的稳定晶相存在较大差距,实验上难以实现各个状态的精准测量。对于GST而言,结晶后形成立方结构的半导体相,而持续退火会驱动空位有序化过程[92],并最终形成六角结构的金属相,该过程的电学和光学变化已有大量研究结果[106,107]。但对于Sb2Te1而言,尚未有系统性的研究报道。Sb2Te1是一种典型的界面生长型材料,其形核速率远低于GST。Sb2Te1是用于可擦除光盘应用材料银铟锑碲(Ag/In doped Sb2Te1)[108~110]的母体材料,其稳定的晶体相结构为有序的A7结构,由1个Sb2Te3五层结构和2个Sb原子双层结构组成。Wang等[111]利用AIMD模拟了Sb2Te1的界面生长过程(模型包含810个原子),发现快速结晶后的Sb2Te1形成与Ag/In doped Sb2Te1类似的无序的菱方结构,所有晶体格点被Sb/Te原子随机占据,如图6a[111]所示。他们选取了结晶化过程中的多个瞬间进行结构优化,并对Te有序化过程进行建模,进而计算了Sb2Te1从非晶相到亚稳态晶相再到稳定态晶相过程中介电函数的变化趋势,其虚部ε2的变化趋势见图6b[111]。整体而言,ε2在可见光范围(400~800 nm)绝对值的变化较小,而在近红外与通信波段(1200~2000 nm)变化较大。通过以下公式[112]可以直接计算出PCM在各个状态下的折射率(n)消光系数(k)以及反射率(R):

n=ε12+ε22+ε1212
k=ε12+ε22-ε1212
R=n-12+k2n+12+k2

式中,ε1ε2分别为介电函数的实部与虚部。

图6

图6   面向Sb2Te1相变合金光波导器件应用的多尺度模拟[111]

Fig.6   Multiscale simulation of Sb2Te1 phase change alloy for waveguide devices [111]

(a) local structural snapshots of amorphous and crystalline Sb2Te1 (amor.—amorphous; crys.—crystalline; Sb and Te atoms are rendered as yellow and green spheres, respectively)

(b) changes in dielectric function upon crystallization and Te ordering (ε2—imaginary part of the dielectric function, ITe—concentration of Te atoms in Te-rich layers)

(c) schematic of a Sb2Te1 waveguide device (ITO—indium tin oxide, hITO—height of ITO, hSb2Te1—height of Sb2Te1 layer, dSb2Te1—length of Sb2Te1 layer, wwg—width of the waveguide, hwg—height of the waveguide, T—transmittance, P1—power of incident light, P2—power of transmitted light)

(d) transmittance profiles of different phases

(e) corresponding electric field |E| of the x-z plane of Sb2Te1 device in different phases, the color bar below shows the normalized electric field intensity (PCM—phase-change materials)


这些光学数据可用于筛选预测不同PCM在理想状态下的光学差异,而且可作为输入参数,结合基于连续介质理论的器件仿真,为器件的实际应用提供理论指导。

Wang等[111]将DFT计算得到的Sb2Te1的光学性质作为关键参数传递至FDTD仿真软件Lumerical[113]并进行了光学器件模拟。硅光技术的快速发展为PCM光子器件的大规模集成带来了新的契机。图6c[111]给出了典型的PCM光波导器件,该器件由SiO2绝缘体、绝缘体上硅波导(silicon-on-insulator,SOI)、沉积在硅波导上的相变薄膜与氧化铟锡(indium tin oxide,ITO)覆盖层构成。入射光信号沿着硅波导传播时会与相变薄膜之间发生倏逝耦合形成倏逝场,由于相变薄膜在不同相态下具有不同的消光系数,入射光未能被全反射的部分被不同程度地吸收。当入射光强度较大时,相变材料吸收能量产生的Joule热足以诱发材料相变,完成对信息的编码;当入射光强度适中时,材料的相态不会发生改变,通过测量经过相变薄膜区域后出射光的光强度便可完成对信息的读取。图6d[111]给出了长度为2与1 μm的Sb2Te1波导器件光透过率的FDTD仿真结果,在长度为1 μm器件中透过率对比窗口最大可达40%,超越了Ge-Sb-Te光波导器件约20%[28]图6e[111]分别对应了Sb2Te1合金3种结构的电场|E|分布图,直观地展示了处于不同相态的波导器件的光透过程度。需注意的是,当Sb2Te1的透射率差异最大时,晶体相为无序菱方结构,而Te有序化会减小该窗口,即额外的升温退火处理会减弱Sb2Te1波导器件的性能。因此,在使用该类器件时应当进行高频高速的器件操作,并且降低环境温度的干扰。该工作是多尺度模拟指导PCM光学应用研究的典型案例。近期,Zheng等[114]通过原位电子显微学实验,报道了Sb2Te1存在无序菱方亚稳相以及其向稳定有序A7层状结构转变的微观演化过程,证实了Wang等[111]AIMD的计算结果。

3.2 相变合金机器学习势开发

多尺度模拟虽然可以得到一定有价值的信息,但该模拟过程忽略了实际器件中的原子运动,尤其在尺寸效应、界面作用明显的高集成密度器件场景下,该类信息的缺失可直接影响器件性能模拟的准确性。AIMD虽然计算精度高,但计算消耗大,仅能支持数百至数千原子的有效计算。有限元等连续介质方法虽然计算效率高,但计算精度高度依赖输入参数,而在纳米器件操作过程很多参数无法获取。因此,发展高效精准的机器学习势函数是突破材料计算方法界限的关键,可在保证模型具有DFT计算精度的前提下,大幅提升其分子动力学计算效率。具体而言,包含N个原子的体系具有3N个维度的自由度,利用机器学习势可对体系中原子势能面3N 维度进行较为简化的数学表述,即以所有原子的位置为自变量,包含总能量的势能面、可计算的原子间作用力等信息为因变量的数学函数[97]。机器学习势方法使用描述符量化体系中原子的局部结构,并利用较小尺寸模型DFT计算的能量和受力等结果作为参考数据库,对材料势能面进行无参数回归,获得能够快速准确地描述材料原子环境与势能面的机器学习原子间势。与传统的经验泛函不同,机器学习原子间势对势能面函数的具体形式不进行先验假设,而是从大量精度更高的DFT计算的结果中直接提取信息。一旦势函数拟合成功,便无需额外的参考数据,可直接高效地预测大尺度模型的能量和受力情况,从而解决更复杂的问题。

机器学习势的具体拟合过程如图7a[97]所示,主要包括3大步骤:参考数据库的建立、原子环境量化和势能面拟合。依据拟合目标建立全面而精准的数据库是机器学习势的基础。数据库中的参考结构需要具有代表性,不仅能够特征化描述势能面上能量极小值点的结构,还要包含高能量的结构信息,以通过有限数量的原子构型实现对势能面的充分采样。常见的参考数据库来源包括Materials Project[48]、ICSD[115]等材料数据库,AIMD模拟计算,势能迭代训练过程中的结构,以及从头算随机晶体结构搜索(ab initio random structure searching,AIRSS)[116]等。数据库中的结构需要通过DFT进行精确的计算来获取体系中原子的能量和受力信息。完成数据采集后,如何将数据库中体系的空间构型转化为机器学习可识别的数据集,即采用数学表达方式量化原子环境,是下一个核心的问题。该量化指标被称为材料描述符,可以提炼原子局部环境的关键信息,便于高效重构原子环境。一般情况下,某一原子环境的描述符以该原子为中心,将指定截断半径内近邻原子的信息编码,且需要在满足平移、旋转、置换等空间不变性的前提下兼顾计算效率与连贯性。势能面的拟合则是对构型原子环境与能量受力数据的回归过程,通过不断地回归学习减小目标势能面与DFT数据点之间的差异。MLMD通常使用LAMMPS软件进行计算[117]

图7

图7   根据文献[37,97,118,119]得到的机器学习原子间势的拟合过程及方法

Fig.7   Process and method for fitting machine learning interatomic potential

(a) construction process of machine learning interatomic potential, according to Ref.[97] (ξ—process of getting the smooth overlap of atomic positions descriptor, σat—smooth parameter, rcut—specified cutoff, ρi (rcut)—obtained atomic density, q—descriptors, E(q)—energies; the red, blue and yellow spheres represent Ge, Te and Sb atoms, respectively)

(b) sketch of the neural, networks according to Ref.[118] ( G1, G2—input vectors describing the atomic configurations, γji—weight sum of the node values, αij —connecting weight parameter, ɛ—potential energy)

(c) schematic of the graph convolutional neural networks[119]

(d) schematic of the kernel based Gaussian approximation potential, according to Ref.[37] (Ei —potential energy, αi —regression coefficient, k—SOAP similarity)


图7b~d[37,118,119]所示,目前常见的机器学习原子间势方法主要包括神经网络(neural network,NN)方法[118]、图卷积神经网络(graph convolutional neural networks,GCN)方法[119]与Gaussian近似势(Gaussian approximation potential,GAP)方法[37],分别使用了不同的材料描述符与回归方法。神经网络方法通过输入层、隐藏层与输出层模拟神经元的工作方式,将原子信息使用描述符编码至输入层,通过一系列非线性激活函数训练优化中间隐藏层节点的权重,获得描述体系势能面的最优函数[118]。神经网络常用的描述符为原子中心对称函数(atom-centered symmetry functions,ACSF),能够将直角坐标转换为一系列对称函数来精确表示原子环境[120]。图卷积神经网络基于图论的思想,将原子结构提取为包含点线的图,以节点代表原子,以连线代表原子间的化学键,每个节点具有本征的特征向量,通过卷积神经网络将参数节点的相似度与特征向量等进行非线性变换,训练得出原子间势[119,121]。Gaussian近似方法通常使用SOAP作为描述符,量化输入结构中原子局部结构之间的相似程度得到核函数,并将体系的势能面回归拟合为核函数的线性组合[122,123]

近年来,机器学习原子间势在相变材料的研究中得到了广泛的应用。Sosso等[124]于2012年开发出基于NN的GeTe合金机器学习原子间势,成功地重现了GeTe合金液态、晶态与非晶态的结构特征,具有与基于DFT的AIMD相匹配的计算精度。该机器学习原子间势还被用于包含4096个原子的GeTe模型的结晶动力学研究,加深了对相变材料有限尺寸效应、晶体临界晶核的形成、晶体高温生长速率等结晶动力学问题的理解[125]。此外,利用该机器学习原子间势实现了直径为9 nm的GeTe纳米线在不同温度下重结晶及老化过程的大尺度模拟,模型包含16540个原子,揭示了纳米线熔化温度与结晶速率之间的联系[126]。针对其他相变材料组分,如Ge-Sb-Te合金[127],Sb单质[128,129]和Sb-Te二元组分[130]训练的神经网络机器学习势亦被应用于相变材料的热输运、结晶动力学、非晶相老化导致电阻漂移等问题的研究。近期,Wang等[121]将神经网络与图论结合,得到的图卷积网络能够同时支持关系推理和灵活结构组合,表现出优异的性能。如图8[121]所示,基于图论思想,将Sb-Te二元合金数据库中的晶态与非晶态结构抽样为对应的图描述符,利用节点及节点间关系代表Sb-Te合金结构的化学环境,并建立图神经网络,对节点间关系进行特征提取与建模拟合,训练得出Sb-Te二元合金图卷积网络势。该使用图卷积网络拟合的Sb-Te二元组分合金势被用于非晶结构的动态分析,能够精确描述从7∶1至1∶2的Sb-Te二元合金组分的晶态、非晶态与液态结构特征,且与DFT结果十分吻合。该图卷积机器学习势的训练过程已形成了名为PotentialMind的框架,将高通量计算生成数据库、图描述符整合、卷积神经网络结构定制、机器学习势训练、材料性质预测与分子动力学模拟等流程集合为一体,可精确高效地描述材料的结构特征。该框架有望通过深度学习与迁移学习扩展到更加复杂的材料体系中。

图8

图8   基于图卷积网络的Sb-Te二元合金机器学习势[121]

Fig.8   Graph convolutional machine learning potential for binary Sb-Te alloy[121] (Rc—cutoff radiaus; G —graph descriptor; E—potential energy; Fx, Fy, Fz —atomic forces of x, y, z components; NN—neural network)


Mocanu等[131]于2018年使用Gaussian近似势(GAP)方法首次拟合出Ge2Sb2Te5合金的机器学习势,利用该势函数实现了包含7200个原子的GST模型的分子动力学模拟;基于此机器学习势,Mocanu等[132]还研究了GST模型尺寸对非晶结构的影响以及液态的冷却过程,模型尺寸最大达到24300个原子;Konstantinou等[133,134]针对非晶GST开发的GAP势被用于研究材料非晶态的结构特征与电子中间态特性。近期,Zhou等[100]利用该方法开发了新一代的Ge-Sb-Te GAP势函数,将模拟的成分区域覆盖了整个GeTe-Sb2Te3伪二元线。通过收集多种Ge-Sb-Te合金成分的晶体相、非晶相、液态相结构构建了初始数据集,生成了初版机器学习势函数,随后引入结构优化、熔融淬火、结晶化、密度调整等训练过程,通过6次DFT/GAP迭代矫正,最终得到了具有DFT计算精度的机器学习势函数,称为GAP-GST-22。该势函数具有良好的化学扩展性,除了描述具有准确化学计量比的Ge-Sb-Te成分,如Ge8Sb2Te11、Ge4Sb2Te7、Ge1Sb2Te4、Ge2Sb2Te5等,还可计算具有成分缺陷的Ge-Sb-Te合金,如Ge2.2Sb2Te5、Ge2Sb1.8Te5等。相比于AIMD,GAP-MD的计算效率得到大幅度提升,原本需要高性能集群计算半年时间的Ge1Sb2Te4结晶化计算(图3a[61]),可使用普通服务器在1 d之内完成,而且所得到的结晶演化过程与AIMD高度相似。目前,该势函数已完全开源,CASTEP版本可在ZENODO平台下载[135],VASP版本可在ALKEMIE[50]平台下载。研究人员可根据自身需求,对该势函数进行进一步迭代训练,如添加掺杂元素、引入界面效应等。

3.3 相变存储器件的跨尺度原子模拟

在获得高效机器学习势的基础之上,Zhou等[100]实现了对Ge-Sb-Te合金不同应用场景下的跨尺度全原子模拟。在已商用的三维堆叠相变存储芯片中,PCM存储单元的特征尺寸达到20 nm × 20 nm × 40 nm,包含的Ge-Sb-Te合金原子数超过53万个。如图9a[100]所示,在存储器操作时,当加载电压超过OTS选通管的阈值电压时,大电流可通过,并实现对上方PCM层的SET或RESET操作。该过程具有明显的非均匀加热属性,电流汇聚所产生的Joule热沿着垂直方向加载至PCM单元。此时,MD计算不能直接采用前期AIMD/MLMD计算所采用的正则系综(NVT、NPT)或微正则系综(NVE)。由于RESET操作所产生的温度梯度很大且操作时间较短,Zhou等[100]采用了NVT + NVE混合的方式进行了器件操作模拟。如图9b[100]所示,该Ge1Sb2Te4晶体模型包含532980个原子。使用NVT在室温300 K下进行结构弛豫之后,切换至NVE模式,并逐步加入额外的能量,模型下方输入的能量最大,沿着纵向方向逐渐递减。模型最上方的原子固定,作为隔绝热量传输的壁垒。整个过程持续为10 ps (共5000 MD步),输入的总能量为60 fJ。使用k¯ 参数量化熔化过程结构相似度的颜色映射,可观察到在最初2 ps内,模型仍具有分层结构特征;进一步加热至6 ps时,模型底部区域开始出现晶格熔化;模型在10 ps加热后除靠近顶部隔热层外,其他大部分区域已完全无序化。此后,逐步移除加载在原子上的动能,模拟淬火快冷过程。根据每个原子的瞬时速度与振动计算出体系的温度分布。图9c[100]给出了整个体系在20~40 ps淬火快冷过程中温度分布变化的趋势。在40 ps时,体系回到室温300 K。图9d[100]给出了熔化快冷过程中径向分布函数的变化,最终得到的非晶结构与传统正则系统均匀加热所得到的非晶结构基本一致。此外,Zhou等[100]还开展了GST非晶结构弛豫、电场诱导元素迁移等方面的计算。

图9

图9   基于Gaussian近似机器学习势的Ge1Sb2Te4合金器件尺度的原子模拟[100]

Fig.9   Device-scale atomistic modeling of Gaussian approximation machine learning potential for ternary Ge1Sb2Te4 alloy[100]

(a) 3D crosspoint structure (OTS—ovonic threshold switching)

(b) non-isothermal melting process

(c) heat dissipation process (T—temperature)

(d) changes in the radial distribution function (RDF) upon melt-quench amorphization.


需要特别指出,MLMD虽然是相变存储材料理论研究方面的重要突破,但仅能计算相变过程的结构演化特征,并不能够直接计算该过程中对应的电学与光学性质变化,该方面的计算依然需要借助DFT。此外,当前MLMD的计算效率相比于FEM方法仍有多个数量级的差距,难以支撑器件与电路的低成本、高效率设计与仿真。因此,MLMD仅提供了新的理论工具,其目的不是要替代其他工具,而是要促进与DFT/FEM等方法的有机结合,从而支撑PCM的实验研究与工程化发展。

4 总结与展望

本文综述了大尺度第一性原理分子动力学、材料设计与高通量材料筛选、多尺度模拟以及机器学习势函数等先进材料计算方法在相变存储材料研发中的前沿进展,这些新型的数据与技术驱动的科学研究方法为相变材料与器件的研发带来了新变革,优化了相变材料研发与应用的流程与成本。尤其机器学习势的开发带来的跨尺度模拟优势,有望支撑更为复杂、更为实际的应用场景。例如,考虑电极与介质层的界面效应对PCM形核结晶、生长速率、熔化能耗、失效机制等方面的影响,有助于从原子角度理解预测材料行为,帮助设计优化PCM器件结构。当然,MLMD的计算效率仍需进一步提升,从而降低器件原子模拟的计算成本。可考虑开发优化算法,借助图形处理器 (graphics processing unit,GPU)等计算密集型单元提升计算效率。也可针对MLMD开发专用的计算芯片,提升算力[136]。在计算PCM物理性质变化方面,可通过深度学习加速DFT Hamiltonian量算法(DeepH)获得大尺寸模型的电子态结构[137]。目前,该方法已成功应用于晶体材料研究[137,138],但由于非晶材料缺乏长程有序性,计算其电子态结构时将存在一定挑战。此外,对于高密度大容量三维堆叠相变存储芯片的开发,OTS选通层扮演着至关重要的角色,可有效阻止漏电流带来的存储误差。但OTS的选通机理尚不清晰,未来可将文章中所讨论的先进计算方法应用于OTS非晶材料,如Ge-As-Se、Ge-As-Te等,加强对OTS的阈值开关微观机制的理解,并实现对其开关比值、阈值电压漂移、易失与非易失性能的有效调控。总之,以高性能材料计算、大数据与AI驱动的研究方法在材料科学与工程领域具有广阔的应用前景,已在相变存储器等若干领域取得了重要进展,并将持续引领更多核心技术领域取得实质性突破。

参考文献

Wuttig M, Yamada N.

Phase-change materials for rewriteable data storage

[J]. Nat. Mater., 2007, 6: 824

PMID      [本文引用: 1]

Phase-change materials are some of the most promising materials for data-storage applications. They are already used in rewriteable optical data storage and offer great potential as an emerging non-volatile electronic memory. This review looks at the unique property combination that characterizes phase-change materials. The crystalline state often shows an octahedral-like atomic arrangement, frequently accompanied by pronounced lattice distortions and huge vacancy concentrations. This can be attributed to the chemical bonding in phase-change alloys, which is promoted by p-orbitals. From this insight, phase-change alloys with desired properties can be designed. This is demonstrated for the optical properties of phase-change alloys, in particular the contrast between the amorphous and crystalline states. The origin of the fast crystallization kinetics is also discussed.

Wong H S P, Raoux S, Kim S, et al.

Phase change memory

[J]. Proc. IEEE, 2010, 98: 2201

Zhang W, Mazzarello R, Wuttig M, et al.

Designing crystallization in phase-change materials for universal memory and neuro-inspired computing

[J]. Nat. Rev. Mater., 2019, 4: 150

DOI      [本文引用: 3]

The global demand for data storage and processing has increased exponentially in recent decades. To respond to this demand, research efforts have been devoted to the development of non-volatile memory and neuro-inspired computing technologies. Chalcogenide phase-change materials (PCMs) are leading candidates for such applications, and they have become technologically mature with recently released competitive products. In this Review, we focus on the mechanisms of the crystallization dynamics of PCMs by discussing structural and kinetic experiments, as well as ab initio atomistic modelling and materials design. Based on the knowledge at the atomistic level, we depict routes to improve the parameters of phase-change devices for universal memory. Moreover, we discuss the role of crystallization in enabling neuro-inspired computing using PCMs. Finally, we present an outlook for future opportunities of PCMs, including all-photonic memories and processors, flexible displays with nanopixel resolution and nanoscale switches and controllers.

Zhou W, Shen X Y, Yang X L, et al.

Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing

[J]. Int. J. Extrem. Manuf., 2024, 6: 022001

Zhang Z H, Wang Z W, Shi T, et al.

Memory materials and devices: From concept to application

[J]. InfoMat, 2020, 2: 261

[本文引用: 1]

Kwon D H, Kim K M, Jang J H, et al.

Atomic structure of conducting nanofilaments in TiO2 resistive switching memory

[J]. Nat. Nanotechnol., 2010, 5: 148

[本文引用: 1]

Prezioso M, Merrikh-Bayat F, Hoskins B D, et al.

Training and operation of an integrated neuromorphic network based on metal-oxide memristors

[J]. Nature, 2015, 521: 61

Liu S, Lu N D, Zhao X L, et al.

Eliminating negative-SET behavior by suppressing nanofilament overgrowth in cation-based memory

[J]. Adv. Mater., 2016, 28: 10623

[本文引用: 1]

Mangin S, Ravelosona D, Katine J A, et al.

Current-induced magnetization reversal in nanopillars with perpendicular anisotropy

[J]. Nat. Mater., 2006, 5: 210

[本文引用: 1]

Torrejon J, Riou M, Araujo F A, et al.

Neuromorphic computing with nanoscale spintronic oscillators

[J]. Nature, 2017, 547: 428

[本文引用: 1]

Park B H, Kang B S, Bu S D, et al.

Lanthanum-substituted bismuth titanate for use in non-volatile memories

[J]. Nature, 1999, 401: 682

[本文引用: 1]

Chanthbouala A, Garcia V, Cherifi R O, et al.

A ferroelectric memristor

[J]. Nat. Mater., 2012, 11: 860

DOI      PMID      [本文引用: 1]

Memristors are continuously tunable resistors that emulate biological synapses. Conceptualized in the 1970s, they traditionally operate by voltage-induced displacements of matter, although the details of the mechanism remain under debate. Purely electronic memristors based on well-established physical phenomena with albeit modest resistance changes have also emerged. Here we demonstrate that voltage-controlled domain configurations in ferroelectric tunnel barriers yield memristive behaviour with resistance variations exceeding two orders of magnitude and a 10 ns operation speed. Using models of ferroelectric-domain nucleation and growth, we explain the quasi-continuous resistance variations and derive a simple analytical expression for the memristive effect. Our results suggest new opportunities for ferroelectrics as the hardware basis of future neuromorphic computational architectures.

Wong H S P, Salahuddin S.

Memory leads the way to better computing

[J]. Nat. Nanotechnol., 2015, 10: 191

DOI      PMID      [本文引用: 1]

Yang J J, Strukov D B, Stewart D R.

Memristive devices for computing

[J]. Nat. Nanotechnol., 2013, 8: 13

DOI      PMID     

Memristive devices are electrical resistance switches that can retain a state of internal resistance based on the history of applied voltage and current. These devices can store and process information, and offer several key performance characteristics that exceed conventional integrated circuit technology. An important class of memristive devices are two-terminal resistance switches based on ionic motion, which are built from a simple conductor/insulator/conductor thin-film stack. These devices were originally conceived in the late 1960s and recent progress has led to fast, low-energy, high-endurance devices that can be scaled down to less than 10 nm and stacked in three dimensions. However, the underlying device mechanisms remain unclear, which is a significant barrier to their widespread application. Here, we review recent progress in the development and understanding of memristive devices. We also examine the performance requirements for computing with memristive devices and detail how the outstanding challenges could be met.

Service R F.

The brain chip

[J]. Science, 2014, 345: 614

DOI      PMID     

Lanza M, Sebastian A, Lu W D, et al.

Memristive technologies for data storage, computation, encryption, and radio-frequency communication

[J]. Science, 2022, 376: eabj9979

Liu B, Wei T, Hu J, et al.

Universal memory based on phase-change materials: From phase-change random access memory to optoelectronic hybrid storage

[J]. Chin. Phys., 2021, 30B: 058504

[本文引用: 1]

Kau D, Tang S, Karpov I V, et al.

A stackable cross point phase change memory

[A]. Proceedings of 2009 IEEE International Electron Devices Meeting [C]. Baltimore: IEEE, 2009: 1

[本文引用: 2]

Cheng H Y, Carta F, Chien W C, et al.

3D cross-point phase-change memory for storage-class memory

[J]. J. Phys., 2019, 52D: 473002

[本文引用: 2]

Li X, Chen H P, Xie C C, et al.

Enhancing the performance of phase change memory for embedded applications

[J]. Phys. Status Solidi (RRL), 2019, 13: 1800558

[本文引用: 1]

Arnaud F, Ferreira P, Piazza F, et al.

High density embedded PCM cell in 28 nm FDSOI technology for automotive micro-controller applications

[A]. Proceedings of 2020 IEEE International Electron Devices Meeting [C]. San Francisco: IEEE, 2020: 24.2.1

Cappelletti P, Annunziata R, Arnaud F, et al.

Phase change memory for automotive grade embedded NVM applications

[J]. J. Phys., 2020, 53D: 193002

[本文引用: 1]

Sebastian A, Le Gallo M, Khaddam-Aljameh R, et al.

Memory devices and applications for in-memory computing

[J]. Nat. Nanotechnol., 2020, 15: 529

DOI      PMID      [本文引用: 1]

Traditional von Neumann computing systems involve separate processing and memory units. However, data movement is costly in terms of time and energy and this problem is aggravated by the recent explosive growth in highly data-centric applications related to artificial intelligence. This calls for a radical departure from the traditional systems and one such non-von Neumann computational approach is in-memory computing. Hereby certain computational tasks are performed in place in the memory itself by exploiting the physical attributes of the memory devices. Both charge-based and resistance-based memory devices are being explored for in-memory computing. In this Review, we provide a broad overview of the key computational primitives enabled by these memory devices as well as their applications spanning scientific computing, signal processing, optimization, machine learning, deep learning and stochastic computing.

Xu M, Mai X L, Lin J, et al.

Recent advances on neuromorphic devices based on chalcogenide phase-change materials

[J]. Adv. Funct. Mater., 2020, 30: 2003419

Shastri B J, Tait A N, Ferreira de Lima T, et al.

Photonics for artificial intelligence and neuromorphic computing

[J]. Nat. Photonics, 2021, 15: 102

[本文引用: 1]

Liu H L, Dong W L, Wang H, et al.

Rewritable color nanoprints in antimony trisulfide films

[J]. Sci. Adv., 2020, 6: eabb7171

[本文引用: 1]

Cheng Z G, Milne T, Salter P, et al.

Antimony thin films demonstrate programmable optical nonlinearity

[J]. Sci. Adv., 2021, 7: eabd7097

Ríos C, Stegmaier M, Hosseini P, et al.

Integrated all-photonic non-volatile multi-level memory

[J]. Nat. Photonics, 2015, 9: 725

DOI      [本文引用: 1]

Rios, Carlos; Hosseini, Peiman; Bhaskaran, Harish Univ Oxford, Dept Mat, Oxford OX1 3PH, England. Stegmaier, Matthias; Wang, Di; Scherer, Torsten; Pernice, Wolfram H. P. Karlsruhe Inst Technol, Inst Nanotechnol, D-76344 Eggenstein Leopoldshafen, Germany. Wang, Di; Scherer, Torsten Karlsruhe Inst Technol, Karlsruhe Nano Micro Facil, D-76344 Eggenstein Leopoldshafen, Germany. Wright, C. David Univ Exeter, Dept Engn, Exeter EX4 4QF, Devon, England. Pernice, Wolfram H. P. Univ Munster, Inst Phys, D-48149 Munster, Germany.

Cheng Z G, Ríos C, Pernice W H P, et al.

On-chip photonic synapse

[J]. Sci. Adv., 2017, 3: e1700160

Wuttig M, Bhaskaran H, Taubner T.

Phase-change materials for non-volatile photonic applications

[J]. Nat. Photonics, 2017, 11: 465

[本文引用: 1]

Wu C M, Yu H S, Lee S, et al.

Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network

[J]. Nat. Commun., 2021, 12: 96

DOI      PMID     

Neuromorphic photonics has recently emerged as a promising hardware accelerator, with significant potential speed and energy advantages over digital electronics for machine learning algorithms, such as neural networks of various types. Integrated photonic networks are particularly powerful in performing analog computing of matrix-vector multiplication (MVM) as they afford unparalleled speed and bandwidth density for data transmission. Incorporating nonvolatile phase-change materials in integrated photonic devices enables indispensable programming and in-memory computing capabilities for on-chip optical computing. Here, we demonstrate a multimode photonic computing core consisting of an array of programable mode converters based on on-waveguide metasurfaces made of phase-change materials. The programmable converters utilize the refractive index change of the phase-change material GeSbTe during phase transition to control the waveguide spatial modes with a very high precision of up to 64 levels in modal contrast. This contrast is used to represent the matrix elements, with 6-bit resolution and both positive and negative values, to perform MVM computation in neural network algorithms. We demonstrate a prototypical optical convolutional neural network that can perform image processing and recognition tasks with high accuracy. With a broad operation bandwidth and a compact device footprint, the demonstrated multimode photonic core is promising toward large-scale photonic neural networks with ultrahigh computation throughputs.

Ríos C, Youngblood N, Cheng Z G, et al.

In-memory computing on a photonic platform

[J]. Sci. Adv., 2019, 5: eaau5759

[本文引用: 1]

Feldmann J, Youngblood N, Karpov M, et al.

Parallel convolutional processing using an integrated photonic tensor core

[J]. Nature, 2021, 589: 52

[本文引用: 1]

Zhang W, Mazzarello R, Ma E.

Phase-change materials in electronics and photonics

[J]. MRS Bull., 2019, 44: 686

DOI      [本文引用: 4]

The rapidly growing demand for data storage and processing, driven by artificial intelligence (AI) and other data-intensive applications, is posing a serious challenge for current computing devices based on the von Neumann architecture. For every calculation, data sets need to be shuffled sequentially between the processor, and multiple memory and storage units through bandwidth-limited and energy-inefficient interconnects, typically causing 40% power wastage. Phase-change materials (PCMs) show great promise to break this bottleneck by enabling nonvolatile memory devices that can optimize the complex memory hierarchy, and neuro-inspired computing devices that can unify computing with storage in memory cells. The articles in this issue of MRS Bulletin highlight recent breakthroughs in the fundamental materials science, as well as electronic and photonic implementations of these novel devices based on PCMs.

Curtarolo S, Hart G L W, Nardelli M B, et al.

The high-throughput highway to computational materials design

[J]. Nat. Mater., 2013, 12: 191

DOI      PMID      [本文引用: 1]

High-throughput computational materials design is an emerging area of materials science. By combining advanced thermodynamic and electronic-structure methods with intelligent data mining and database construction, and exploiting the power of current supercomputer architectures, scientists generate, manage and analyse enormous data repositories for the discovery of novel materials. In this Review we provide a current snapshot of this rapidly evolving field, and highlight the challenges and opportunities that lie ahead.

Xie J X, Su Y J, Xue D Z, et al.

Machine learning for materials research and development

[J]. Acta Metall. Sin., 2021, 57: 1343

DOI     

The rapid advancement of big data and artificial intelligence has resulted in new data-driven materials research and development (R&D), which has achieved substantial progress. This fourth paradigm is believed to improve materials design efficiency and industrialized application and stimulate the discovery of new materials. The focus of this work is on the emerging field of machine learning-assisted material R&D, with an emphasis on machine learning predictions and optimization design. Following a brief description of feature construction and selection, recent developments in material predictions on phases/structures, processing-structure-property relationships, microstructure, and material performance are reviewed. This paper also summarizes the research progress on optimization algorithms with machine learning models, which is expected to overcome the bottlenecks such as the small size and high noise level of material data samples and huge space for exploration. The challenges and future opportunities for machine learning applications in materials R&D are discussed and prospected.

谢建新, 宿彦京, 薛德祯 .

机器学习在材料研发中的应用

[J]. 金属学报, 2021, 57: 1343

DOI     

大数据和人工智能技术的快速发展推动数据驱动的材料研发快速发展成为变革传统试错法的新模式,即所谓的材料研发第四范式。新模式将大幅度提升材料研发效率和工程化应用水平,推动新材料快速发展。本文聚焦机器学习辅助材料研发这一新兴领域,以材料预测和优化设计为主线,在简述材料特征构建与筛选的基础上,综述了机器学习在材料相结构、显微组织、成分-工艺-性能、服役行为预测等方面的研究进展;针对材料数据样本量少、噪音高、质量差,以及新材料探索空间巨大的特点,综述了机器学习模型与优化算法和策略融合,在新材料优化设计中的研究进展和典型应用。最后,讨论了机器学习在材料领域的发展机遇和挑战,展望了发展前景。

Friederich P, Häse F, Proppe J, et al.

Machine-learned potentials for next-generation matter simulations

[J]. Nat. Mater., 2021, 20: 750

DOI      PMID      [本文引用: 4]

The choice of simulation methods in computational materials science is driven by a fundamental trade-off: bridging large time- and length-scales with highly accurate simulations at an affordable computational cost. Venturing the investigation of complex phenomena on large scales requires fast yet accurate computational methods. We review the emerging field of machine-learned potentials, which promises to reach the accuracy of quantum mechanical computations at a substantially reduced computational cost. This Review will summarize the basic principles of the underlying machine learning methods, the data acquisition process and active learning procedures. We highlight multiple recent applications of machine-learned potentials in various fields, ranging from organic chemistry and biomolecules to inorganic crystal structure predictions and surface science. We furthermore discuss the developments required to promote a broader use of ML potentials, and the possibility of using them to help solve open questions in materials science and facilitate fully computational materials design.

Li H, Xu Y, Duan W H.

Ab initio artificial intelligence: Future research of Materials Genome Initiative

[J]. MGE Adv., 2023, 1: e16

[本文引用: 3]

Su Y J, Fu H D, Bai Y, et al.

Progress in materials genome engineering in China

[J]. Acta Metall. Sin., 2020, 56: 1313

DOI      [本文引用: 2]

Materials genome engineering (MGE) is a frontier technology in the field of material science and engineering, which is well capable to revolutionize the research and development (R&D) mode of new materials, greatly improve the R&D efficiency, shorten the R&D time, and reduce the cost. This paper reviews the progress of MGE in China from the aspects of the fundamental theory and methods, key technology and equipment, the R&D of new materials and related engineering application, talents training, formation and promotion of new concept of material genetic engineering. The paper also looks forward to the future development of MGE in China.

宿彦京, 付华栋, 白 洋 .

中国材料基因工程研究进展

[J]. 金属学报, 2020, 56: 1313

DOI      [本文引用: 2]

材料基因工程是材料领域的颠覆性前沿技术,将对材料研发模式产生革命性的变革,全面加速材料从设计到工程化应用的进程,大幅度提升新材料的研发效率,缩短研发周期,降低研发成本,促进工程化应用。本文从基础理论与方法、关键技术与装备、新材料研发与工程化应用、人才培养以及材料基因工程新理念的形成和推广等方面,综述了中国材料基因工程的研究进展,并提出了未来发展方向建议。

Xie J X.

Prospects of materials genome engineering frontiers

[J]. MGE Adv., 2023, 1: e17

[本文引用: 1]

Feng R, Zhang C, Gao M C, et al.

High-throughput design of high-performance lightweight high-entropy alloys

[J]. Nat. Commun., 2021, 12: 4329

DOI      PMID      [本文引用: 1]

Developing affordable and light high-temperature materials alternative to Ni-base superalloys has significantly increased the efforts in designing advanced ferritic superalloys. However, currently developed ferritic superalloys still exhibit low high-temperature strengths, which limits their usage. Here we use a CALPHAD-based high-throughput computational method to design light, strong, and low-cost high-entropy alloys for elevated-temperature applications. Through the high-throughput screening, precipitation-strengthened lightweight high-entropy alloys are discovered from thousands of initial compositions, which exhibit enhanced strengths compared to other counterparts at room and elevated temperatures. The experimental and theoretical understanding of both successful and failed cases in their strengthening mechanisms and order-disorder transitions further improves the accuracy of the thermodynamic database of the discovered alloy system. This study shows that integrating high-throughput screening, multiscale modeling, and experimental validation proves to be efficient and useful in accelerating the discovery of advanced precipitation-strengthened structural materials tuned by the high-entropy alloy concept.© 2021. The Author(s).

Rao Z Y, Tung P Y, Xie R W, et al.

Machine learning-enabled high-entropy alloy discovery

[J]. Science, 2022, 378: 78

DOI      PMID      [本文引用: 1]

High-entropy alloys are solid solutions of multiple principal elements that are capable of reaching composition and property regimes inaccessible for dilute materials. Discovering those with valuable properties, however, too often relies on serendipity, because thermodynamic alloy design rules alone often fail in high-dimensional composition spaces. We propose an active learning strategy to accelerate the design of high-entropy Invar alloys in a practically infinite compositional space based on very sparse data. Our approach works as a closed-loop, integrating machine learning with density-functional theory, thermodynamic calculations, and experiments. After processing and characterizing 17 new alloys out of millions of possible compositions, we identified two high-entropy Invar alloys with extremely low thermal expansion coefficients around 2 × 10 per degree kelvin at 300 kelvin. We believe this to be a suitable pathway for the fast and automated discovery of high-entropy alloys with optimal thermal, magnetic, and electrical properties.

Xu Y F, Elcoro L, Song Z D, et al.

High-throughput calculations of magnetic topological materials

[J]. Nature, 2020, 586: 702

[本文引用: 1]

Choudhary K, Garrity K F, Jiang J, et al.

Computational search for magnetic and non-magnetic 2D topological materials using unified spin-orbit spillage screening

[J]. npj Comput. Mater., 2020, 6: 49

[本文引用: 1]

Gorai P, Stevanović V, Toberer E S.

Computationally guided discovery of thermoelectric materials

[J]. Nat. Rev. Mater., 2017, 2: 17053

[本文引用: 1]

Wang X D, Tan J L, Ouyang J, et al.

Designing inorganic semiconductors with cold-rolling processability

[J]. Adv. Sci., 2022, 9: 2203776

[本文引用: 1]

Gao Z Q, Wei T R, Deng T T, et al.

High-throughput screening of 2D van der Waals crystals with plastic deformability

[J]. Nat. Commun., 2022, 13: 7491

DOI      PMID      [本文引用: 1]

Inorganic semiconductors exhibit multifarious physical properties, but they are prevailingly brittle, impeding their application in flexible and hetero-shaped electronics. The exceptional plasticity discovered in InSe crystal indicates the existence of abundant plastically deformable two-dimensional van der Waals (2D vdW) materials, but the conventional trial-and-error method is too time-consuming and costly. Here we report on the discovery of tens of potential 2D chalcogenide crystals with plastic deformability using a nearly automated and efficient high-throughput screening methodology. Seven candidates e.g., famous MoS, GaSe, and SnSe 2D materials are carefully verified to show largely anisotropic plastic deformations, which are contributed by both interlayer and cross-layer slips involving continuous breaking and reconstruction of chemical interactions. The plasticity becomes a new facet of 2D materials for deformable or flexible electronics.© 2022. The Author(s).

Jain A, Ong S P, Hautier G, et al.

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation

[J]. APL Mater., 2013, 1: 011002

[本文引用: 3]

Hicks D, Toher C, Ford D C, et al.

AFLOW-XtalFinder: A reliable choice to identify crystalline prototypes

[J]. npj Comput. Mater., 2021, 7: 30

[本文引用: 1]

Wang G J, Li K Q, Peng L Y, et al.

High-throughput automatic integrated material calculations and data management intelligent platform and the application in novel alloys

[J]. Acta Metall. Sin., 2022, 58: 75

DOI      [本文引用: 2]

The development of novel materials has experienced three paradigms: purely empirical, theoretical models, and computational materials science. Currently, the huge amount of data generated by experiments and simulations has facilitated a shift in materials science to a data-driven fourth paradigm. Therefore, the development of high-throughput automatic integrated computations and data mining algorithms based on material databases and artificial intelligence algorithms is critical for accelerating the design of novel materials. This paper presents an open-source distributed computational platform called Artificial Learning and Knowledge Enhanced Materials Informatics Engineering 2.0 (ALKEMIE2.0) based on the AMDIV (automation-modular-database-intelligence-visualization) design concepts. The ALKEMIE2.0 platform includes five core components of automation, modular, materials database, artificial intelligence, and visualization, which are suitable for the computational design of novel materials. The overall characteristics of ALKEMIE2.0 are divided into five pillars. ALKEMIE-Core integrates multiscale calculations and simulation software using the ALKEMIE-Plugin application programming interface. Its high-throughput calculation workflows that support 104 magnitude concurrencies are implemented by integrating the automatic frameworks of model constructions, calculation workflows, and data analyses. Furthermore, the platform is based on the ALKEMIE-Server, which can easily and automatically open daemon services and realize information interactions in distributed supercomputers. With its strong portability and scalability, ALKEMIE has been deployed in the National Supercomputing Tianjin Center. In addition, the multitype materials database called the ALKEMIE-Data Vault contains structure, task, workflow, and material property databases, which combined with the power of supercomputing, enables the rapid application of artificial intelligence algorithms in the design of new materials. In particular, the many user-friendly interfaces, which were elaborately designed using the ALKEMIE-GUI and are suitable for scientists with broad backgrounds, make structural building, work flowcharts, data analysis, and machine learning models more transparent and maneuverable. Finally, the main features of ALKEMIE2.0 are demonstrated using two examples of multiplatform deployment and high-throughput screening of binary aluminum alloys.

王冠杰, 李开旗, 彭力宇 .

高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用

[J]. 金属学报, 2022, 58: 75

DOI      [本文引用: 2]

材料研发模式经历了经验主导的第一范式、理论模型主导的第二范式和计算模拟主导的第三范式,如今正处于数据驱动的第四范式。为加速新材料的设计与研发,发展基于材料数据库和人工智能算法的高通量自动集成计算和数据挖掘算法变得至关重要。本文介绍了作者团队自主开发的分布式高通量自动流程集成计算和数据管理智能平台ALKEMIE2.0 (Artificial Learning and Knowledge Enhanced Materials Informatics Engineering 2.0),该平台基于AMDIV设计理念,包含了自动化、模块化、数据库、人工智能和可视化流程等5个适用于数据驱动的材料研发模式核心要素。概括来说,ALKEMIE2.0以模块化的方式集成了多个不同尺度的计算模拟软件;其高通量自动纠错流程可实现从建模、运行到数据分析,全程自动无人工干预;支持单用户不低于10<sup>4</sup>量级的并发高通量自动计算模拟。进一步而言,ALKEMIE2.0具有强大的可移植性和可扩展性,目前已部署在国家超算天津中心,基于多类型材料数据库结合超算强大的计算能力使得人工智能算法在新材料设计与研发中得以快速的应用和实践。更重要的是,ALKEMIE2.0设计了用户友好的可视化操作界面,使得结构建模、工作流计算逻辑、数据分析和机器学习模型具有更高的透明性和更强的可操作性,且适用于对材料计算模拟掌握程度从初级到专业的所有材料研究人员。最后,通过多平台部署和高通量筛选二元铝合金2个算例详细展示了ALKEMIE2.0的主要特色及功能。

Yamada N, Ohno E, Akahira N, et al.

High speed overwritable phase change optical disk material

[J]. Jpn. J. Appl. Phys., 1987, 26(s4): 61

[本文引用: 1]

Yamada N, Ohno E, Nishiuchi K, et al.

Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory

[J]. J. Appl. Phys., 1991, 69: 2849

[本文引用: 2]

Caravati S, Bernasconi M, Kühne T D, et al.

Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials

[J]. Appl. Phys. Lett., 2007, 91: 171906

[本文引用: 6]

Akola J, Jones R O.

Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe

[J]. Phys. Rev., 2007, 76B: 235201

[本文引用: 2]

Kohara S, Kato K, Kimura S, et al.

Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states

[J]. Appl. Phys. Lett., 2006, 89: 201910

[本文引用: 1]

Rao F, Ding K Y, Zhou Y X, et al.

Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing

[J]. Science, 2017, 358: 1423

DOI      PMID      [本文引用: 12]

Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (GeSbTe). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (ScSbTe) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems.Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Orava J, Greer A L, Gholipour B, et al.

Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry

[J]. Nat. Mater., 2012, 11: 279

DOI      PMID      [本文引用: 2]

Differential scanning calorimetry (DSC) is widely used to study the stability of amorphous solids, characterizing the kinetics of crystallization close to the glass-transition temperature T(g). We apply ultrafast DSC to the phase-change material Ge(2)Sb(2)Te(5) (GST) and show that if the range of heating rates is extended to more than 10(4) K s(-1), the analysis can cover a wider temperature range, up to the point where the crystal growth rate approaches its maximum. The growth rates that can be characterized are some four orders of magnitude higher than in conventional DSC, reaching values relevant for the application of GST as a data-storage medium. The kinetic coefficient for crystal growth has a strongly non-Arrhenius temperature dependence, revealing that supercooled liquid GST has a high fragility. Near T(g) there is evidence for decoupling of the crystal-growth kinetics from viscous flow, matching the behaviour for a fragile liquid suggested by studies on oxide and organic systems.

Jeyasingh R, Fong S W, Lee J, et al.

Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase

[J]. Nano Lett., 2014, 14: 3419

DOI      PMID      [本文引用: 1]

Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) < U < 10(-1) m/s) spanning a wide temperature range (415 < T < 580 K). We also observed direct evidence of non-Arrhenius crystallization behavior in programmed PCM devices at very high heating rates (>10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices.

Ronneberger I, Zhang W, Eshet H, et al.

Crystallization properties of the Ge2Sb2Te5 phase-change compound from advanced simulations

[J]. Adv. Funct. Mater., 2015, 25: 6407

[本文引用: 3]

Ronneberger I, Zhang W, Mazzarello R.

Crystal growth of Ge2Sb2Te5 at high temperatures

[J]. MRS Commun., 2018, 8: 1018

[本文引用: 1]

Xu Y Z, Zhou Y X, Wang X D, et al.

Unraveling crystallization mechanisms and electronic structure of phase-change materials by large-scale ab initio simulations

[J]. Adv. Mater., 2022, 34: 2109139

[本文引用: 10]

ten Wolde P R, Ruiz-Montero M J, Frenkel D.

Simulation of homogeneous crystal nucleation close to coexistence

[J]. Faraday Discuss., 1996, 104: 93

[本文引用: 1]

Bartók A P, Csányi G.

Gaussian approximation potentials: A brief tutorial introduction

[J]. Int. J. Quantum Chem., 2015, 115: 1051

[本文引用: 1]

Kalikka J, Akola J, Jones R O.

Crystallization processes in the phase change material Ge2Sb2Te5: Unbiased density functional/molecular dynamics simulations

[J]. Phys. Rev., 2016, 94B: 134105

[本文引用: 1]

Raty J Y, Zhang W, Luckas J, et al.

Aging mechanisms in amorphous phase-change materials

[J]. Nat. Commun., 2015, 6: 7467

DOI      PMID      [本文引用: 1]

Raty, Jean Yves Univ Liege, Phys Solids Interfaces & Nanostruct, B-4000 Sart Tilman Par Liege, Belgium. Zhang, Wei; Luckas, Jennifer; Chen, Chao; Wuttig, Matthias Rhein Westfal TH Aachen, Inst Theoret Solid State Phys, D-52056 Aachen, Germany. Zhang, Wei; Mazzarello, Riccardo Univ Luxembourg, Fac Sci Technol & Commun, L-1511 Luxembourg, Luxembourg. Luckas, Jennifer Rhein Westfal TH Aachen, JARA FIT, D-52062 Aachen, Germany. Luckas, Jennifer Rhein Westfal TH Aachen, JARA HPC, D-52062 Aachen, Germany. Mazzarello, Riccardo; Wuttig, Matthias Aix Marseille Univ, Ctr Interdisciplinaire Nanosci Marseille CINaM, F-13288 Marseille, France. Bichara, Christophe CNRS, F-13288 Marseille, France.

Li X B, Liu X Q, Liu X, et al.

Role of electronic excitation in the amorphization of Ge-Sb-Te alloys

[J]. Phys. Rev. Lett., 2011, 107: 015501

[本文引用: 1]

Zalden P, Quirin F, Schumacher M, et al.

Femtosecond X-ray diffraction reveals a liquid-liquid phase transition in phase-change materials

[J]. Science, 2019, 364: 1062

DOI      PMID      [本文引用: 1]

In phase-change memory devices, a material is cycled between glassy and crystalline states. The highly temperature-dependent kinetics of its crystallization process enables application in memory technology, but the transition has not been resolved on an atomic scale. Using femtosecond x-ray diffraction and ab initio computer simulations, we determined the time-dependent pair-correlation function of phase-change materials throughout the melt-quenching and crystallization process. We found a liquid-liquid phase transition in the phase-change materials AgInSbTe and GeSb at 660 and 610 kelvin, respectively. The transition is predominantly caused by the onset of Peierls distortions, the amplitude of which correlates with an increase of the apparent activation energy of diffusivity. This reveals a relationship between atomic structure and kinetics, enabling a systematic optimization of the memory-switching kinetics.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Kalikka J, Akola J, Larrucea J, et al.

Nucleus-driven crystallization of amorphous Ge2Sb2Te5: A density functional study

[J]. Phys. Rev., 2012, 86B: 144113

[本文引用: 1]

Kalikka J, Akola J, Jones R O.

Simulation of crystallization in Ge2Sb2Te5: A memory effect in the canonical phase-change material

[J]. Phys. Rev., 2014, 90B: 184109

Loke D, Lee T H, Wang W J, et al.

Breaking the speed limits of phase-change memory

[J]. Science, 2012, 336: 1566

DOI      PMID      [本文引用: 1]

Phase-change random-access memory (PCRAM) is one of the leading candidates for next-generation data-storage devices, but the trade-off between crystallization (writing) speed and amorphous-phase stability (data retention) presents a key challenge. We control the crystallization kinetics of a phase-change material by applying a constant low voltage via prestructural ordering (incubation) effects. A crystallization speed of 500 picoseconds was achieved, as well as high-speed reversible switching using 500-picosecond pulses. Ab initio molecular dynamics simulations reveal the phase-change kinetics in PCRAM devices and the structural origin of the incubation-assisted increase in crystallization speed. This paves the way for achieving a broadly applicable memory device, capable of nonvolatile operations beyond gigahertz data-transfer rates.

Zhang B, Zhang W, Shen Z J, et al.

Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material

[J]. Appl. Phys. Lett., 2016, 108: 191902

[本文引用: 1]

Xu M, Zhang W, Mazzarello R, et al.

Disorder control in crystalline GeSb2Te4 using high pressure

[J]. Adv. Sci., 2015, 2: 1500117

[本文引用: 1]

Zheng Y H, Xia M J, Cheng Y, et al.

Direct observation of metastable face-centered cubic Sb2Te3 crystal

[J]. Nano Res., 2016, 9: 3453

[本文引用: 1]

Li Z, Si C, Zhou J, et al.

Yttrium-doped Sb2Te3: A promising material for phase-change memory

[J]. ACS Appl. Mater. Interfaces, 2016, 8: 26126

[本文引用: 1]

Liu B, Li K Q, Liu W L, et al.

Multi-level phase-change memory with ultralow power consumption and resistance drift

[J]. Sci. Bull., 2021, 66: 2217

DOI      PMID     

By controlling the amorphous-to-crystalline relative volume, chalcogenide phase-change memory materials can provide multi-level data storage (MLS), which offers great potential for high-density storage-class memory and neuro-inspired computing. However, this type of MLS system suffers from high power consumption and a severe time-dependent resistance increase ("drift") in the amorphous phase, which limits the number of attainable storage levels. Here, we report a new type of MLS system in yttrium-doped antimony telluride, utilizing reversible multi-level phase transitions between three states, i.e., amorphous, metastable cubic and stable hexagonal crystalline phases, with ultralow power consumption (0.6-4.3 pJ) and ultralow resistance drift for the lower two states (power-law exponent < 0.007). The metastable cubic phase is stabilized by yttrium, while the evident reversible cubic-to-hexagonal transition is attributed to the sequential and directional migration of Sb atoms. Finally, the decreased heat dissipation of the material and the increase in crystallinity contribute to the overall high performance. This study opens a new way to achieve advanced multi-level phase-change memory without the need for complicated manufacturing procedures or iterative programming operations.Copyright © 2021 Science China Press. Published by Elsevier B.V. All rights reserved.

Zhou Y X, Sun L, Zewdie G M, et al.

Bonding similarities and differences between Y-Sb-Te and Sc-Sb-Te phase-change memory materials

[J]. J. Mater. Chem., 2020, 8C: 3646

[本文引用: 1]

Chen B, Chen Y M, Ding K Y, et al.

Kinetics features conducive to cache-type nonvolatile phase-change memory

[J]. Chem. Mater., 2019, 31: 8794

DOI      [本文引用: 1]

Cache-type phase-change random-access memory is a remaining challenge on the path to universal memory. The recently designed Sc0.2Sb2Te3 (SST) alloy is one of the most promising phase-change materials (PCMs) to overcome this challenge, as it allows subnanosecond crystallization speed to reach the crystalline ("1") state at elevated temperatures (e.g., 600 K) but years of reliable retention of the amorphous ("0") state for data storage at room temperature. This contrast in kinetics behavior, upon a relatively small temperature excursion, is more dramatic than that in other PCMs. From the temperature dependence of the crystallization kinetics uncovered via ultrafast differential scanning calorimetry, here, we report an apparent fragile-to-strong crossover in the SST supercooled liquid. We illustrate that two factors are at work simultaneously. First, Sc-stabilized precursors serve as heterogeneous sites to catalyze nucleation, reducing the stochasticity and thereby accelerating the nucleation rate. Second, the SST exhibits an enlarged kinetic contrast between elevated and ambient temperatures. Together they constitute a recipe for the design of PCMs that meets the needs of cache-type nonvolatile memory.

Hu S W, Liu B, Li Z, et al.

Identifying optimal dopants for Sb2Te3 phase-change material by high-throughput ab initio calculations with experiments

[J]. Comput. Mater. Sci., 2019, 165: 51

[本文引用: 1]

Zewdie G M, Zhou Y X, Sun L, et al.

Chemical design principles for cache-type Sc-Sb-Te phase-change memory materials

[J]. Chem. Mater., 2019, 31: 4008

Wang X P, Li X B, Chen N K, et al.

Time-dependent density-functional theory molecular-dynamics study on amorphization of Sc-Sb-Te alloy under optical excitation

[J]. npj Comput. Mater., 2020, 6: 31

Qiao C, Guo Y R, Wang S Y, et al.

Local structure origin of ultrafast crystallization driven by high-fidelity octahedral clusters in amorphous Sc0.2Sb2Te3

[J]. Appl. Phys. Lett., 2019, 114: 071901

Ding K Y, Chen B, Chen Y M, et al.

Recipe for ultrafast and persistent phase-change memory materials

[J]. NPG Asia Mater., 2020, 12: 63

[本文引用: 1]

Ding K Y, Wang J J, Zhou Y X, et al.

Phase-change heterostructure enables ultralow noise and drift for memory operation

[J]. Science, 2019, 366: 210

DOI      PMID      [本文引用: 1]

Artificial intelligence and other data-intensive applications have escalated the demand for data storage and processing. New computing devices, such as phase-change random access memory (PCRAM)-based neuro-inspired devices, are promising options for breaking the von Neumann barrier by unifying storage with computing in memory cells. However, current PCRAM devices have considerable noise and drift in electrical resistance that erodes the precision and consistency of these devices. We designed a phase-change heterostructure (PCH) that consists of alternately stacked phase-change and confinement nanolayers to suppress the noise and drift, allowing reliable iterative RESET and cumulative SET operations for high-performance neuro-inspired computing. Our PCH architecture is amenable to industrial production as an intrinsic materials solution, without complex manufacturing procedure or much increased fabrication cost.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Yang Z, Li B W, Wang J J, et al.

Designing conductive-bridge phase-change memory to enable ultralow programming power

[J]. Adv. Sci., 2022, 9: 2103478

[本文引用: 2]

Wang J J, Wang X Z, Cheng Y D, et al.

Tailoring the oxygen concentration in Ge-Sb-O alloys to enable femtojoule-level phase-change memory operations

[J]. Mater. Futures, 2022, 1: 045302

[本文引用: 1]

Liu Y T, Li X B, Zheng H, et al.

High-throughput screening for phase-change memory materials

[J]. Adv. Funct. Mater., 2021, 31: 2009803

[本文引用: 2]

Zhang W, Zhang H M, Sun S Y, et al.

Metavalent bonding in layered phase-change memory materials

[J]. Adv. Sci., 2023, 10: 2300901

[本文引用: 1]

Wuttig M, Deringer V L, Gonze X, et al.

Incipient metals: Functional materials with a unique bonding mechanism

[J]. Adv. Mater., 2018, 30: 1803777

Wuttig M, Schön C F, Lötfering J, et al.

Revisiting the nature of chemical bonding in chalcogenides to explain and design their properties

[J]. Adv. Mater., 2023, 35: 2208485

[本文引用: 1]

Xu Y Z, Wang X D, Zhang W, et al.

Materials screening for disorder-controlled chalcogenide crystals for phase-change memory applications

[J]. Adv. Mater., 2021, 33: 2006221

[本文引用: 8]

Zhang W, Thiess A, Zalden P, et al.

Role of vacancies in metal-insulator transitions of crystalline phase-change materials

[J]. Nat. Mater., 2012, 11: 952

DOI      PMID     

The study of metal-insulator transitions (MITs) in crystalline solids is a subject of paramount importance, both from the fundamental point of view and for its relevance to the transport properties of materials. Recently, a MIT governed by disorder was observed in crystalline phase-change materials. Here we report on calculations employing density functional theory, which identify the microscopic mechanism that localizes the wavefunctions and is driving this transition. We show that, in the insulating phase, the electronic states responsible for charge transport are localized inside regions having large vacancy concentrations. The transition to the metallic state is driven by the dissolution of these vacancy clusters and the formation of ordered vacancy layers. These results provide important insights on controlling the wavefunction localization, which should help to develop conceptually new devices based on multiple resistance states.

Jiang T T, Wang X D, Wang J J, et al.

In situ characterization of vacancy ordering in Ge-Sb-Te phase-change memory alloys

[J]. Fundam. Res., 2022, DOI: 10.1016/j.fmre.2022.09.010

[本文引用: 2]

Esser M, Deringer V L, Wuttig M, et al.

Orbital mixing in solids as a descriptor for materials mapping

[J]. Solid State Commun., 2015, 203: 31

[本文引用: 1]

Wang Y Z, Ning J, Lu L, et al.

A scheme for simulating multi-level phase change photonics materials

[J]. npj Comput. Mater., 2021, 7: 183

[本文引用: 1]

Khan A I, Daus A, Islam R, et al.

Ultralow-switching current density multilevel phase-change memory on a flexible substrate

[J]. Science, 2021, 373: 1243

DOI      PMID     

[Figure: see text].

Ghazi Sarwat S, Philip T M, Chen C T, et al.

Projected mushroom type phase-change memory

[J]. Adv. Funct. Mater., 2021, 31: 2106547

[本文引用: 1]

Deringer V L, Caro M A, Csányi G.

Machine learning interatomic potentials as emerging tools for materials science

[J]. Adv. Mater., 2019, 31: 1902765

[本文引用: 5]

Wang H, Zhang L F, Han J Q, et al.

DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

[J]. Comput. Phys. Commun., 2018, 228: 178

Wang G J, Wang C R, Zhang X G, et al.

Machine learning interatomic potential: Bridge the gap between small-scale models and realistic device-scale simulations

[J]. iScience, 2024, 27: 109673

[本文引用: 1]

Zhou Y X, Zhang W, Ma E, et al.

Device-scale atomistic modelling of phase-change memory materials

[J]. Nat. Electron., 2023, 6: 746

[本文引用: 11]

Du K K, Li Q, Lyu Y B, et al.

Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST

[J]. Light Sci. Appl., 2017, 6: e16194

[本文引用: 1]

Qu Y R, Li Q, Cai L, et al.

Thermal camouflage based on the phase-changing material GST

[J]. Light Sci. Appl., 2018, 7: 26

Li C L, Liu D J, Dai D X.

Multimode silicon photonics

[J]. Nanophotonics, 2019, 8: 227

DOI     

Multimode silicon photonics is attracting more and more attention because the introduction of higher-order modes makes it possible to increase the channel number for data transmission in mode-division-multiplexed (MDM) systems as well as improve the flexibility of device designs. On the other hand, the design of multimode silicon photonic devices becomes very different compared with the traditional case with the fundamental mode only. Since not only the fundamental mode but also the higher-order modes are involved, one of the most important things for multimode silicon photonics is the realization of effective mode manipulation, which is not difficult, fortunately because the mode dispersion in multimode silicon optical waveguide is very strong. Great progresses have been achieved on multimode silicon photonics in the past years. In this paper, a review of the recent progresses of the representative multimode silicon photonic devices and circuits is given. The first part reviews multimode silicon photonics for MDM systems, including on-chip multichannel mode (de) multiplexers, multimode waveguide bends, multimode waveguide crossings, reconfigurable multimode silicon photonic integrated circuits, multimode chip-fiber couplers, etc. In the second part, we give a discussion about the higher-order mode-assisted silicon photonic devices, including on-chip polarization-handling devices with higher-order modes, add-drop optical filters based on multimode Bragg gratings, and some emerging applications.

Hosseini P, Wright C D, Bhaskaran H.

An optoelectronic framework enabled by low-dimensional phase-change films

[J]. Nature, 2014, 511: 206

Wang D N, Zhao L, Yu S Y, et al.

Non-volatile tunable optics by design: From chalcogenide phase-change materials to device structures

[J]. Mater. Today, 2023, 68: 334

[本文引用: 1]

Siegrist T, Jost P, Volker H, et al.

Disorder-induced localization in crystalline phase-change materials

[J]. Nat. Mater., 2011, 10: 202

DOI      PMID      [本文引用: 1]

Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.

Hu C Q, Yang Z B, Bi C B, et al.

“All-crystalline” phase transition in nonmetal doped germanium-antimony-tellurium films for high-temperature non-volatile photonic applications

[J]. Acta Mater., 2020, 188: 121

[本文引用: 1]

Matsunaga T, Umetani Y, Yamada N.

Structural study of a Ag3.4In3.7Sb76.4Te16.5 quadruple compound utilized for phase-change optical disks

[J]. Phys. Rev., 2001, 64B: 184116

[本文引用: 1]

Matsunaga T, Akola J, Kohara S, et al.

From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials

[J]. Nat. Mater., 2011, 10: 129

DOI      PMID     

Phase-change optical memories are based on the astonishingly rapid nanosecond-scale crystallization of nanosized amorphous 'marks' in a polycrystalline layer. Models of crystallization exist for the commercially used phase-change alloy Ge(2)Sb(2)Te(5) (GST), but not for the equally important class of Sb-Te-based alloys. We have combined X-ray diffraction, extended X-ray absorption fine structure and hard X-ray photoelectron spectroscopy experiments with density functional simulations to determine the crystalline and amorphous structures of Ag(3.5)In(3.8)Sb(75.0)Te(17.7) (AIST) and how they differ from GST. The structure of amorphous (a-) AIST shows a range of atomic ring sizes, whereas a-GST shows mainly small rings and cavities. The local environment of Sb in both forms of AIST is a distorted 3+3 octahedron. These structures suggest a bond-interchange model, where a sequence of small displacements of Sb atoms accompanied by interchanges of short and long bonds is the origin of the rapid crystallization of a-AIST. It differs profoundly from crystallization in a-GST.

Zhang W, Ronneberger I, Zalden P, et al.

How fragility makes phase-change data storage robust: Insights from ab initio simulations

[J]. Sci. Rep., 2014, 4: 6529

DOI      PMID      [本文引用: 1]

Phase-change materials are technologically important due to their manifold applications in data storage. Here we report on ab initio molecular dynamics simulations of crystallization of the phase change material Ag4In3Sb67Te26 (AIST). We show that, at high temperature, the observed crystal growth mechanisms and crystallization speed are in good agreement with experimental data. We provide an in-depth understanding of the crystallization mechanisms at the atomic level. At temperatures below 550 K, the computed growth velocities are much higher than those obtained from time-resolved reflectivity measurements, due to large deviations in the diffusion coefficients. As a consequence of the high fragility of AIST, experimental diffusivities display a dramatic increase in activation energies and prefactors at temperatures below 550 K. This property is essential to ensure fast crystallization at high temperature and a stable amorphous state at low temperature. On the other hand, no such change in the temperature dependence of the diffusivity is observed in our simulations, down to 450 K. We also attribute this different behavior to the fragility of the system, in combination with the very fast quenching times employed in the simulations.

Wang X D, Zhou W, Zhang H M, et al.

Multiscale simulations of growth-dominated Sb2Te phase-change material for non-volatile photonic applications

[J]. npj Comput. Mater., 2023, 9: 136

[本文引用: 10]

Wang V, Xu N, Liu J C, et al.

VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code

[J]. Comput. Phys. Commun., 2021, 267: 108033

[本文引用: 1]

IncAnsys.

Lumerical FDTD solutions

[EB/OL].

[本文引用: 1]

Zheng Y H, Song W X, Song Z T, et al.

A complicated route from disorder to order in antimony-tellurium binary phase change materials

[J]. Adv. Sci., 2024, 11: 2301021

[本文引用: 1]

Belsky A J, Hellenbrandt M, Karen V L, et al.

New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design

[J]. Acta Crystallogr., 2002, 58B: 364

[本文引用: 1]

Pickard C J, Needs R J.

Ab initio random structure searching

[J]. J. Phys.: Condens. Matter, 2011, 23: 053201

[本文引用: 1]

Thompson A P, Aktulga H M, Berger R, et al.

LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales

[J]. Comput. Phys. Commun., 2022, 271: 108171

[本文引用: 1]

Behler J.

First principles neural network potentials for reactive simulations of large molecular and condensed systems

[J]. Angew. Chem. Int. Ed., 2017, 56: 12828

DOI      PMID      [本文引用: 5]

Modern simulation techniques have reached a level of maturity which allows a wide range of problems in chemistry and materials science to be addressed. Unfortunately, the application of first principles methods with predictive power is still limited to rather small systems, and despite the rapid evolution of computer hardware no fundamental change in this situation can be expected. Consequently, the development of more efficient but equally reliable atomistic potentials to reach an atomic level understanding of complex systems has received considerable attention in recent years. A promising new development has been the introduction of machine learning (ML) methods to describe the atomic interactions. Once trained with electronic structure data, ML potentials can accelerate computer simulations by several orders of magnitude, while preserving quantum mechanical accuracy. This Review considers the methodology of an important class of ML potentials that employs artificial neural networks.© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Xie T, Grossman J C.

Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties

[J]. Phys. Rev. Lett., 2018, 120: 145301

[本文引用: 5]

Behler J.

Atom-centered symmetry functions for constructing high-dimensional neural network potentials

[J]. J. Chem. Phys., 2011, 134: 074106

[本文引用: 1]

Wang G J, Sun Y Q, Zhou J, et al.

PotentialMind: Graph convolutional machine learning potential for Sb-Te binary compounds of multiple stoichiometries

[J]. J. Phys. Chem., 2023, 127C: 24724

[本文引用: 5]

Bartók A P, Payne M C, Kondor R, et al.

Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons

[J]. Phys. Rev. Lett., 2010, 104: 136403

[本文引用: 1]

Deringer V L, Bartók A P, Bernstein N, et al.

Gaussian process regression for materials and molecules

[J]. Chem. Rev., 2021, 121: 10073

DOI      PMID      [本文引用: 1]

We provide an introduction to Gaussian process regression (GPR) machine-learning methods in computational materials science and chemistry. The focus of the present review is on the regression of atomistic properties: in particular, on the construction of interatomic potentials, or force fields, in the Gaussian Approximation Potential (GAP) framework; beyond this, we also discuss the fitting of arbitrary scalar, vectorial, and tensorial quantities. Methodological aspects of reference data generation, representation, and regression, as well as the question of how a data-driven model may be validated, are reviewed and critically discussed. A survey of applications to a variety of research questions in chemistry and materials science illustrates the rapid growth in the field. A vision is outlined for the development of the methodology in the years to come.

Sosso G C, Miceli G, Caravati S, et al.

Neural network interatomic potential for the phase change material GeTe

[J]. Phys. Rev., 2012, 85B: 174103

[本文引用: 1]

Sosso G C, Miceli G, Caravati S, et al.

Fast crystallization of the phase change compound GeTe by large-scale molecular dynamics simulations

[J]. J. Phys. Chem. Lett., 2013, 4: 4241

DOI      PMID      [本文引用: 1]

Phase change materials are of great interest as active layers in rewritable optical disks and novel electronic nonvolatile memories. These applications rest on a fast and reversible transformation between the amorphous and crystalline phases upon heating, taking place on the nanosecond time scale. In this work, we investigate the microscopic origin of the fast crystallization process by means of large-scale molecular dynamics simulations of the phase change compound GeTe. To this end, we use an interatomic potential generated from a Neural Network fitting of a large database of ab initio energies. We demonstrate that in the temperature range of the programming protocols of the electronic memories (500-700 K), nucleation of the crystal in the supercooled liquid is not rate-limiting. In this temperature range, the growth of supercritical nuclei is very fast because of a large atomic mobility, which is, in turn, the consequence of the high fragility of the supercooled liquid and the associated breakdown of the Stokes-Einstein relation between viscosity and diffusivity.

Gabardi S, Baldi E, Bosoni E, et al.

Atomistic simulations of the crystallization and aging of GeTe nanowires

[J]. J. Phys. Chem., 2017, 121C: 23827

[本文引用: 1]

Abou El Kheir O, Bonati L, Parrinello M, et al.

Unraveling the crystallization kinetics of the Ge2Sb2Te5 phase change compound with a machine-learned interatomic potential

[J]. npj Comput. Mater., 2024, 10: 33

[本文引用: 1]

Dragoni D, Behler J, Bernasconi M.

Mechanism of amorphous phase stabilization in ultrathin films of monoatomic phase change material

[J]. Nanoscale, 2021, 13: 16146

[本文引用: 1]

Shi M C, Li J H, Tao M, et al.

Artificial intelligence model for efficient simulation of monatomic phase change material antimony

[J]. Mater. Sci. Semicond. Process., 2021, 136: 106146

[本文引用: 1]

Li K Q, Liu B, Zhou J, et al.

Revealing the crystallization dynamics of Sb-Te phase change materials by large-scale simulations

[J]. J. Mater. Chem., 2024, 12C: 3897

[本文引用: 1]

Mocanu F C, Konstantinou K, Lee T H, et al.

Modeling the phase-change memory material, Ge2Sb2Te5, with a machine-learned interatomic potential

[J]. J. Phys. Chem., 2018, 122B: 8998

[本文引用: 1]

Mocanu F C, Konstantinou K, Elliott S R.

Quench-rate and size-dependent behaviour in glassy Ge2Sb2Te5 models simulated with a machine-learned Gaussian approximation potential

[J]. J. Phys., 2020, 53D: 244002

[本文引用: 1]

Konstantinou K, Mocanu F C, Lee T H, et al.

Revealing the intrinsic nature of the mid-gap defects in amorphous Ge2Sb2Te5

[J]. Nat. Commun., 2019, 10: 3065

[本文引用: 1]

Konstantinou K, Mocanu F C, Akola J, et al.

Electric-field-induced annihilation of localized gap defect states in amorphous phase-change memory materials

[J]. Acta Mater., 2022, 223: 117465

[本文引用: 1]

Zhou Y X, Zhang W, Ma E, et al.

Device-scale atomistic modelling of phase-change memory materials

[J]. Nat. Electron., 2023, 6: 746

[本文引用: 1]

Mo P H, Li C, Zhao D, et al.

Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture

[J]. npj Comput. Mater., 2022, 8: 107

[本文引用: 1]

Li H, Wang Z, Zou N L, et al.

Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation

[J]. Nat. Comput. Sci., 2022, 2: 367

[本文引用: 2]

Gong X X, Li H, Zou N L, et al.

General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian

[J]. Nat. Commun., 2023, 14: 2848

DOI      PMID      [本文引用: 1]

The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin-orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>10 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database.© 2023. The Author(s).

/