研究了返温轧制(TRRP)中厚钢板表层的组织特征及其对止裂性能的影响。力学性能测试结果表明,与传统的控轧控冷(TMCP)钢相比,TRRP钢表层的韧、塑性较好,韧脆转变温度低至-100 ℃,而在1/4厚度处,两者性能差异不大。显微组织分析表明,TRRP钢表层组织为等轴状铁素体晶粒+弥散分布的马氏体-奥氏体(M-A)组元,晶粒等效直径约2 μm。通过数值模拟分析了TRRP工艺中间坯温度场的变化,发现中间坯冷却时,表层被冷却到相变温度以下,形成以贝氏体为主的组织,返温后轧制,表层组织发生动态再结晶形成超细晶。示波冲击测试表明,TRRP钢表层试样启裂后,载荷-位移曲线斜率绝对值(|
Temperature reverting rolling process (TRRP) is a newly developed technology for producing heavy steel plate with ultrafine grained surface layer. With hybrid structures along thickness direction, TRRP steel plate has excellent fracture toughness with crack arrestability which arouses interest recently. However, the crack arrest mechanism of the surface layer is still unclear to date. In this work, two types of steel plate produced by TRRP and traditional thermo mechanical control process (TMCP) were studied in order to get a comprehensive understanding of the crack arrest mechanism. The mechanical property tests demonstrate that the toughness of surface layer of TRRP steel is significantly higher than that of TMCP steel, while the mechanical properties at 1/4 thickness position of the two types are quite close. It's worth noting that ductile-brittle transition temperature of the TRRP steel surface layer is as low as -100 ℃. Microstructure analysis of the TRRP surface layer shows a coexistence of equiaxed ferrite grains with grain sizes of about 2 μm and dispersed M-A constituent. Numerical simulation of the temperature field of TRRP intermediate slab reveals the microstructure forming process. First, the surface layer is cooled lower than phase transformation temperature, which results in the generation of bainite ferrite. Subsequently, dynamic recrystallization of ferrite takes place in rolling process and leads to the formation of ultrafine grains. Instrumental impact test at -60 ℃ shows that the crack propagation of TRRP steel is effectively inhibited after a steady developing stage. The morphological analysis of the cross section of fracture shows significant plastic deformation in the surface layer, which means crack propagation energy is absorbed. As a result, the crack propagation is efficiently arrested. The statistical study of the grain orientations in the surface layer of TRRP steel indicates a randomly distribution of the ultrafine grains, which can hinder the crack propagation effectively. The nano indentation test shows that the hardness distributions of TRRP steel are mainly below 2.0 GPa. This means the microstructure is characterized by a small amount of hard phase dispersing in soft matrix, thus the crack initiated at the interface of phases can hardly propagate.
中厚板是建造船舶的主要结构材料,要求具有良好的强度、韧性和焊接性能[1,2],为了防止断裂事故,需考虑两个方面,一是防止裂纹的萌生,二是抑制裂纹的扩展。船舶建造中要进行大量的焊接,焊接部位缺陷较多,易形成裂纹源,并沿焊缝扩展,当裂纹扩展到母材时,能否抑制裂纹扩展就显得尤为重要。目前,采用控轧控冷工艺(TMCP)生产的中厚板被广泛用于船舶建造,相比传统的正火钢,TMCP钢具有更好的强度和韧性综合性能,然而目前常用的TMCP工艺通常需要进行加速冷却,钢板表层易形成马氏体或上贝氏体组织,其韧性较差,不利于钢板止裂。Ishikawa等[3]开发了一种特殊的TMCP工艺,称之为返温轧制工艺(TRRP)[4],其特点是在粗轧后将钢板表层加速冷却到加热时奥氏体相变开始温度(
关于表层超细晶的产生机理,Mabuchi等[5]认为,返温时钢板表层的铁素体相分数较高,铁素体在高温区变形,产生高密度位错,易发生回复和再结晶,从而细化晶粒。赵四新等[6]认为,在冷却和返温时,表层发生了过冷奥氏体-铁素体-奥氏体的相变过程,变形时发生形变诱导铁素体相变,同时在晶界和亚晶界析出的渗碳体钉扎晶界,抑制了铁素体晶粒长大。杜海军等[7]认为,晶粒细化是由于过冷奥氏体发生应变诱导铁素体相变,以及先共析铁素体的动态再结晶。本文作者前期的研究[8]表明,铁素体连续型动态再结晶是晶粒细化的主要机制,并且铁素体动态再结晶遵循亚晶转动形核机制。然而,表层超细晶对钢板止裂性能的影响机理还没有明确,需要进行重点研究。
本工作使用TRRP工艺试制了65 mm厚的表层超细晶钢板,同时采用传统TMCP工艺生产了同样厚度的钢板进行对比。使用光学显微镜(OM)、扫描电镜(SEM)和电子背散射衍射(EBSD)分析了试样的组织和晶粒取向,利用轴向拉伸、系列温度冲击、示波冲击和纳米压痕等手段研究了超细晶组织对试样止裂性能的影响机理。
实验用钢的化学成分(质量分数,%)为:C 0.07,Si 0.18,Mn 1.53,S 0.001,P 0.004,(Nb+V+Ti) 0.04,Fe余量,钢水精炼后浇铸为300 mm厚的连铸坯。轧制分别采用TRRP和TMCP工艺进行。轧制前将钢板加热到奥氏体化温度,并保温2 h,粗轧之后的工艺有所区别,TRRP工艺下,中间坯进行加速冷却一定时间后出水,待钢板表面返温后进行精轧,称为TRRP钢;TMCP工艺下,中间坯进行空冷,待温度降低后进行精轧,称为TMCP钢。精轧后都进行加速冷却,钢板最终厚度均为65 mm。
从钢板表层取4 mm×20 mm矩形截面比例拉伸试样,从
图1 返温轧制(TRRP)钢的OM像
Fig.1
OM images of temperature reverting rolling process (TRRP) steel((a) macrostructure (b) microstructure of region I in
使用SEM进一步分析TRRP和TMCP钢的显微组织,如
图2 TRRP钢和控轧控冷(TMCP)钢的SEM像
Fig.2
SEM images of surface layer (a, c) and
TRRP钢和TMCP钢的拉伸性能如
表1
TRRP钢和TMCP钢表层和
Table1
Tensile properties of surface layer and
TRRP钢和TMCP钢表层位置的Charpy冲击实验结果如
Ishikawa等[9]研究表明,TRRP钢断裂时,表层超细晶组织发生塑性变形,形成剪切唇,这使钢板受力状态从平面应变向平面应力转化[10],提高了裂纹失稳扩展的临界应力强度因子(
根据文献[11]所述方法对TRRP工艺的水冷返温过程进行数值模拟,并将中间坯温度场变化曲线与实验钢的过冷奥氏体连续冷却转变(CCT)曲线结合,分析超细晶的形成机理及其对厚度的影响,结果如
图4 TRRP钢中间坯水冷返温过程不同厚度位置的组织相变过程
Fig.4
Phase transformation behavior of microstructure through thickness of TRRP steel intermediate slab during water cooling and reverting (SUF—surface layer with ultrafine-grained microstructure, A—austenite, B—bainite, F—ferrite, P—pearlite,
通过数值模拟来计算超细晶层的厚度,TRRP工艺下,水冷结束时中间坯厚度方向上的温度分布如
Charpy冲击实验得到的冲击吸收功是试样断裂过程中吸收能量的总和,由于各个阶段吸收能量的比例不同,韧脆特性不同的材料可能获得相同的冲击吸收功,所以,单凭冲击吸收功不能精确地表达材料的韧脆特性[14]。利用示波冲击实验,可以将冲击吸收功分解为裂纹启裂功和裂纹扩展功,材料的韧化一般表现为裂纹扩展功的提高[15,16]。具有止裂能力的材料,能够有效地抑制裂纹扩展,在裂纹扩展被抑制后,能够继续吸收裂纹扩展的能量,因此有研究者[17~20]将裂纹扩展功分为韧性断裂吸收功、脆性断裂吸收功、和脆断终止后吸收功。
TRRP钢表层、TMCP钢表层和TMCP钢
图6
TRRP钢表层、TMCP钢表层和TMCP钢
Fig.6
Curves of load and absorbed energy
TRRP钢表层、TMCP钢表层和TMCP钢
图7
TRRP钢表层、TMCP钢表层和TMCP钢
Fig.7
Fractographs of instrumented impact samples (Figs.7b, e and h are magnified images of marked area in Figs.7a, d and g. Figs.7c, f and i are cross section images of fracture)((a~c) surface layer of TRRP steel (d~f) surface layer of TMCP steel (g~i)
图8 TRRP钢和TMCP钢表层组织的反极图取向成像图
Fig.8 Inverse pole figure (IPF) maps of surface layer of TRRP (a) and TMCP (b) steels
图9 TRRP钢和TMCP钢表层组织的取向分布图
Fig.9
Orientation distribution function (ODF) maps of surface layer of TRRP (a) and TMCP (b) steels (
TRRP钢和TMCP钢表层的EBSD图和晶粒取向差分布统计结果如
图10 TRRP钢和TMCP钢表层组织的取向成像图和取向差分布图
Fig.10 Misorientation maps (a, c) and misorientation angle distribution diagrams (b, d) of surface layer of TRRP (a, b) and TMCP (c, d) steels (In Figs.10a and c, black lines show grain boundaries larger than 15°, red lines show grain boundaries between 2°and 15°)
实验钢表层组织存在多种相成分,硬质的M-A相与基体相之间存在硬度差,相界面处存在应力,易成为裂纹的起源,为了分析相成分对止裂性能的影响,对实验钢的表层组织进行纳米压痕测试。
图11 TRRP钢和TMCP钢表层的纳米压痕SEM像
Fig.11 SEM images of nanoindentations of surface layer of TRRP (a) and TMCP (b) steels
图12 TRRP钢和TMCP钢表层纳米压痕硬度统计分布图
Fig.12 Statistics of the nanoindentation hardness of surface layer of TRRP (a) and TMCP (b) steels
分别对TRRP钢和TMCP钢表层40个测点的纳米压痕硬度进行统计,结果如
(1) 采用TRRP工艺轧制的中厚板表层具有超细晶组织,超细晶组织由等轴状铁素体晶粒+弥散分布的M-A组元组成,晶粒等效直径约2 μm。与TMCP钢相比,TRRP钢表层的韧性更好,而在
(2) 数值模拟发现,TRRP工艺下,中间坯冷却时表层一定深度的范围被冷却到了
(3) 示波冲击实验表明,TRRP钢表层试样启裂后,载荷-位移曲线斜率绝对值|
(4) TRRP钢表层的晶粒取向呈随机分布,平均晶界角度和大角度晶界分数分别达到为32.8°和69.8%,硬度分布集中在2.0 GPa以下,组织特征为少量的硬质相弥散分布在较软的铁素体基体上,相界面处萌生的裂纹在基体中不易扩展。
The authors have declared that no competing interests exist.
[1] |
[本文引用:]
|
[2] |
[本文引用:]
|
[3] |
[本文引用:]
|
[4] |
[本文引用:]
|
[5] |
[本文引用:]
|
[6] |
[本文引用:]
|
[7] |
[本文引用:]
|
[8] |
[本文引用:]
|
[9] |
URL
[本文引用:]
|
[10] |
[本文引用:]
|
[11] |
[本文引用:]
|
[12] |
[本文引用:]
|
[13] |
[本文引用:]
|
[14] |
[本文引用:]
|
[15] |
[本文引用:]
|
[16] |
[本文引用:]
|
[17] |
[本文引用:]
|
[18] |
URL
[本文引用:]
|
[19] |
[本文引用:]
|
[20] |
[本文引用:]
|
[21] |
[本文引用:]
|
[22] |
[本文引用:]
|
[23] |
[本文引用:]
|
[24] |
[本文引用:]
|
[25] |
[本文引用:]
|
[26] |
[本文引用:]
|