Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (3): 318-322    DOI:
Current Issue | Archive | Adv Search |
MICROSTRUCTURE OF Ti ALLOY BASED COMPOSITE REINFORCED BY SiC FIBERS
YU Liguo; LU Yuxiong; LI Douxing; YE Hengqiang(Laboratory of Atomic Imaging of Solids; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015) (Manuscript received 1995-06-08; in revised form 1 995- 12-05)
Cite this article: 

YU Liguo; LU Yuxiong; LI Douxing; YE Hengqiang(Laboratory of Atomic Imaging of Solids; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015) (Manuscript received 1995-06-08; in revised form 1 995- 12-05). MICROSTRUCTURE OF Ti ALLOY BASED COMPOSITE REINFORCED BY SiC FIBERS. Acta Metall Sin, 1996, 32(3): 318-322.

Download:  PDF(429KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The study of Ti alloy based composite reinforced by SiC fibers showed that SiC dendrites grew along the radial directions peprendicular to the tungsten core; many stacking faults and microtwins were formed within the dendrites; SiC fibers bond well to the matrix, and the amorphous interfacial layers between them have not been damaged during composition. In the course of composition SiC dendrites near the interfacial region dissolved and diffused into the amorphous layer and reacted with the Ti alloy matrix at high temperature, producing TiC and Ti5Si3 . Correspondent. LI Douxing, professor, Institute of.Metal Research, Chinese Academy of Sciences, Shenyang 110015
Key words:  SiC fiber      composite      interfacial reaction     
Received:  18 March 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I3/318

1石南林,常新春,夏非.复合材料进展,北京:航空工业出版社,1994:1142NingXG,XuHG,YeHQ,ZhuJ,HuKY,LuYX,BiJ.PhilosMag,1991;A63:7273HallEL,RitterAM.JMaterRes,1993;8:11584LerchBA,HullDR,LeonhardtTA.Composites,1990;21:2165BilbaK,ManaudJP,PetitcorpsYL,QuenissetJM,MaterSciEng,1991;A135:1416HallIW,LirnJL,LepeticorpsY,BilbaK.JMaterSci,1992;27:38357JonesC,KielyCJ,WangSS.JMaterRes,1989;4:327
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[3] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[5] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[6] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[7] SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. 金属学报, 2022, 58(7): 868-882.
[8] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[9] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[10] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
[11] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[12] FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. 金属学报, 2022, 58(11): 1416-1426.
[13] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[14] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[15] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
No Suggested Reading articles found!