Please wait a minute...
Acta Metall Sin  1997, Vol. 33 Issue (1): 54-68    DOI:
Current Issue | Archive | Adv Search |
ENERGETICS OF METALLIC DEFECT AND ELECTRONIC STRUCTURE OF DOPED GRAIN BOUNDARY
WANG Chongyu (Central Iron and Steel Research Institute; Ministry of Metallurgical Industry; Beijing 100081)
Cite this article: 

WANG Chongyu (Central Iron and Steel Research Institute; Ministry of Metallurgical Industry; Beijing 100081). ENERGETICS OF METALLIC DEFECT AND ELECTRONIC STRUCTURE OF DOPED GRAIN BOUNDARY. Acta Metall Sin, 1997, 33(1): 54-68.

Download:  PDF(2394KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In this paper, we reviewed that a first principles interatomic potential and the theoretical calculation method of interaction energy between atoms, which are developed by us. Meanwhile, the important role of the energetic functions in the studies of the electronic structure of the impurity-grain boundary complexes and the basic properties of the crystal are reported. On the other hand, the electronic structure and the doping effect of intermetallic compound are studied by the use of first principles method and Green function method. The quantum effect of impurity-grain boundary complexes and the correlation mechanism between the electronic structure with the property of a1loy and dislocation reaction are explored.We find that Boron and Nitrogen have strengthening effect for the cohesion of grain boundary, and the phosphorous and sulphur are embrittle exements in the grain boundary of Ni-base alloy. Molybdemum influence the deformation mechanism of Ti-Al intermetallic compound.
Key words:  interaction of atoms      doped grain boundary      electronic structure     
Received:  18 January 1997     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1997/V33/I1/54

1 Wigner E P, Seitz F. Solid State Phys, 1995:95
2 Seitz F. Modern Theory of Solid. New York: McGraw-Hill, 1940
3 Callway J. Quantum Theory of the Solid StaIe, London: Academic Press INC, 1976
4 Hume Rothery W, Raynor G V. The Structure of Metals and AHoys. London: Inst Met, 1954
5 Hume Rothery W, Coles B R. Adv Phys, 1954; 149:3
6 Pauling L. Proc Nat Acad Sci USA, 195f; 533:36
7 Pauling L. The Nature of the Chemical Bond Third Edition, Ithaca N Y: Cornell University Press,1960
8 Eberhardt J J. MRS, 1995; 191:63
9 Ashby M F. Philos Trans Res Soc L0ndon, 1987; 393:A322
10 Wang Chongyu. Defecl Diffusion Forum, 1995; 125-126:79
11Wang Chongyu, An Feng. Gu Binling et al. Phys Rev, 1988; B38:3905
12Chen Ying, Wang Chongyu, Liu Fusui. Phys Rev, 1988; B37: 10510
13 Wang Chongyu, Liu Shenying, Han Linguang. Phys Rev, 1990; B41: 1359
14 Wang Chongyu, Wang Bing, Feng Peng et al. Phys Rev, 1992; B46:2693
15 Wang Chongyu, Chen Liqun et al. J Appl Phys, 1992; 71(1):239
16 Cao Junchu, Liu Fusui, Chongyu Wang. J Phys F: Met Phys, 1988; 18: 1839
17 Zeng Yueping, Wang Chongyu et al. Solid State Commun, 1990; 73:643
18 Wang Fuhe, Wang Chongyu, Yang Jinlong, J Phys Condens Matter, 1996; 8: 1
19 Wang Chongyu, Yue Yong, Liu Shenying. Phys Rev, 1990; B41:6591
20 Wang Huaiyu, Liu Fusui, Wang Chongyu. J Phys Con dens Matter, 1989; 1: 1983
21 Wang Chongyu, Li Junqing et al. Chin Sci Bulletin, 1990; 35: 197
22 Wang Bing, Wang Chongyu et al. Chin Sci Bulletin, 1992; 37: 189
23 Wang Chongyu, Zeng Yueping. Sci China, 1992; A35:1466
24 Wang Chongyu Zhao Dongliang. Mater Res Soc Sym Proc, 1994; 318:571
25 Wang Chongyu, Yue Yong et al. Sci China, l993; A36:1261
26 Wang Chongyu, Liu Shenying, Han Lingguang. Defect Dthesion Forum, 1996; 134-135:73
27 Wang Chongyu. Prog Nat Sci, 1996; 6:490
28 Yu Tao, Wang Chongyu, Wang Bing. J Mater Sci Technol, 1996; 12:427
29 Wang Chongyu, Dou Chuanyi, Zeng Yueping, Gao Lin. Proceedtw of International workshop onPhysics of materials, B5-1, 1989
30 Wang Fuhe, Zhang Haifeng, Wang Chongyu. Phys Rev, submitted
31 Wang Fuhe, Wang Chongyu. J Phys, submitted
32 Wang Chongyu, Yu Tao, Duan Wenhui, Wang Ligen. Phys Lett, 1995; A197:449
33 Mie G. Ann Phys, 1903; 11:657
34 Machlin E S. Acta Metall, 1974; 22:95
35 Girifalco L A, Weizer V G. Phys Rev, 1959; 114: 687
36 Melstein E. Phvs Status Solidi, 1971; B48:681
37 Maeda K, Vitek V, Sutton A P. Acta Metall, 1982; 30:2001
38 Finnis M W, Sinclair J S. Philos Mag, 1984; A50: 45
39 Daw M S, Baskes M I. Phys Rev, 1984; B29: 6443
40 Chen H P, Ellis D E. Phys Rev, 1989; B39: 12469
41 Blaisten-barojas E, Khanna S N. Phys Rev Lett, 1988; 61:1477
42 Tersoff J. Phys Rev Lett, 1986; 56:632
43 Chelikovesky J R, Phillips J C, Kamal M, Strauss M. Phys Rev Lett, 1989; 62: 292
44 Pettifor D G. Phys Rev Lett, 1989; 63: 2480
45 Moriarty J A. Phys Rev, 1989; B38:3199
46 Norskov J K, Lang N D. Phys Rev, 1980; B20: 2131
47 Scott M J, Zaremba E. Phys Rev, 1980; B22: 1564
48 Jacobsen K W, Norskov J K, Puska M J. Phys Rev, 1987; B35:7423
49 Jacobsen K W, Norskov J K. Phys Rev Lett, 1988; 60: 24964
50 Ellis D E, Painter G S. Phy Rev, 1970; B2: 2887
51 Delley B, Ellis D E, Freeman A J. Phys Rev, 1983; B27: 2132
52 Yang Jinlong, Wang Kelin. Phys Rev, 1993; B47: 4205
53 Seeger A, Schumacher D, Schilling W, Diehl J. Vacancler and interstitials in metals Amesterdam,North-Holland, 1970
54 Wycisk W, Feller-Kniepmeier M. J Nucl Mater, 1978; 69 / 70: 616
55 Kittel C. Introduction to solid state Physics. New York, Wiley, 1971
56 Heine V. In: Ehrenreich H, Seitz F, Turnbull D. Solid State Physics, New York: Academic, 1980:1
57 Johannes R L et al. Phys Rev Lett, 1976; 36: 372
58 Olson G B. In: Olson G B, Azrin M, Wright E S eds., Innovations in Ultrahigh-strength Steel Technology, Proceedings of Sagamore Conference, No.34(Sagamore Army Material Research Conference, LakeGeorge, New York), 1987: 3, and References therein
59 Aust A T, Hanneman R E, Nissen P et al. Acta Metall 1968; 16:291
60 Williams T M, Stoneham A M, Harries D R. Met Sci, 1976; 10:14
61 Paintendre N et al. In: Bett, W et al eds., Hteh Temperature AHy for Gas Turbins and otherApllication, Part 2, Reidel, Dordrecht, 1986:877
62 Wang Ligen, Wang Chongyu. Phys Rev, submitted
63 Wang Ligen, Wang Chongyu. J Phys, submitted
64 Wu R Q, Freeman A J, Olson G B. Phys Rev, 1994; B50:75
65 Wu R Q, Freeman A J, Olson G B. J Mater Res, 1992; 7:2433
66 Tang S P, Freeman A J, Olson G B. Phys Rev, 1993; B47:2441
67 Wu R Q, Freeman A J, Olson G B. Phys Rev, 1993; B47:6855
68 Tang S P, Freeman A J, Olson G B. Phys Rev, 1994; B50: 1
69 Briant C L, Messmer R P. Philos Mag, 1980; B42:569
70 Losch W. Acta Metall, 1979; 27: 1885, Scr Metall, 1979; 13: 661
71 Haydock R. J Phys Colloq, 1981; (C14): 3807
72 Eberhart M E, Johnson K H, Latanision R M. Acta Metall, 1984; 32: 955
73 Eberhart M E, Latanision R M, Johnson K H. Acta Metall, 1985: 33: 1769
74 Eberhart M E, Vvedensky D D. Phys Rev Lett, 1987; 61: 58
75 Vvedensky D D, Eberhart M E. Philos Mag Lett, 1987; 157: 55
76 Frisch H L, Patel J R. Phvs Rev Lett, 1967; 18: 784
77 Masuda-Jindo K. Mater Sci Forum. 1989; 97: 37
78 Morinaga M et al. Acta Metall Mater, 1990; 38: 25
79 Morinaga M et al. Modeltw Simmu Mater Sci Eng, 1993; 151: 1
80 Messmer R P, Briant C L. Acta Metall, 1982: 30: 457
81 Messmer R P, Briant C L. Acta Metall, 1982; 30: 181 1
82 Song Quanming, Wang Chongyu, Wen Shulin. J APPl Phys, submitted
83 Troiano A R. Trans ASM, 1960: 54:52
84 Krasko G L. Scr Met Mater, 1993: 1543:28
85 Krasko G L, Olson G B. Solid State Commun, 1990; 147:76
86 Liu C T. Scr Metall Mater, 1991; 25: 1231
87 Aoki K, Izumi O. Nippon Kinzoku Gakkaishi, 1979; 43: 1190
88 Takasugi T, Izumi O. Acta Metall, 1985; 33: 1259
89 Aoki K. Mater Trans JIM, 1990; 31:443
90 Masuda-Jindo K J. J Phys Colloq, 1982; 43:921
91 Liu C T, White C L, Horton J A. Acla Metall, 1985; 33:213
92 Chen S P, Voter A V, Albers R C, Boring A M, Hay P J. J Mater Res, 1990; 5:955
93 Greenberg B A. Phys Status Solidi, 1973; B55:59
94 Shechtman D et al. Metall Trans, 1974; A5: 1373
95 Lipsitt H A et al. Metall Trans, 1975; A6: 1991
96 Kawabata T et al. AcIa Metall, 1985; 33: 1355
97 Hug G et al. Philos Mag, 1986; A54:47
98 Hug G et al. Philos Mag, 1988; A57:499
99 Court S A et al. Philos Mag, 1990; A61: 141
100 Seehra S. J Mater Res, 1993: 8:989
101 Morihiko Nakamura, J Mater Res, 1993; 8:68
102 Zhang X D, Loretto M H. Philos Mag, 1995; A71:421
103 Hanamura T et al. J Mater Res, 1988; 3:656
104 Hanamura T et aI. J Mater Sci Lett, 1989; 8:24
105 Huang S C el al. MRS Meettw, Boston, 1988
106 Kawabata T et al. MRS Meettw, Boston, 1988
107 Greenberg B F et al. Scr Metall, 1988; 22:859
108 Fox A G. AcIa Meall MatIer, 1994; 42:3929
109 Anisimov V I et al. Phys Met Metall, 1987; 63: 192
110 Erschbaumer H, Podloucky R, R0gl P, Temnitschka G, Wagner R. Intermetallics, 1:99
111 Xu J X. J Mater Res, 1994; 9: 1755
112Fu CL,Yoo M H.Philos Mag Lett,1990;62:159
113Jund P,Zhong W,Tomanek D Phys Rev,1995;B51:9569
114Zhou J,Fu C L,Yoo M H.Intermetallics,1995; 3:265
115Hanamura T et al.J Mater Res,1988;3:656
116Hanamura T et al.J Mater Sci Lett, 1989; 824
[1] HUANGFU Hao, WANG Zilong, LIU Yongli, MENG Fanshun, SONG Jiupeng, QI Yang. A First Principles Investigation of W1 - x Ir x Alloys: Structural, Electronic, Mechanical, and Thermal Properties[J]. 金属学报, 2022, 58(2): 231-240.
[2] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[3] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[4] MAO Pingli, YU Bo, LIU Zheng, WANG Feng, JU Yang. FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE AND ELASTIC PROPERTY OF AB2 TYPE INTERMETALLICS IN Mg-Zn-Ca ALLOY[J]. 金属学报, 2013, 49(10): 1227-1233.
[5] ZHOU Dianwu LIU Jinshui XU Shaohua PENG Ping. FIRST–PRINCIPLE CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF Al2Sr AND Mg2Sr PHASES[J]. 金属学报, 2011, 47(10): 1315-1320.
[6] ZHOU Dianwu XU Shaohua ZHANG Fuquan PENG Ping LIU Jinshui. FIRST-PRINCIPLES CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF AB2 TYPE INTERMETALLICS IN ZA62 MAGNESIUM ALLOY[J]. 金属学报, 2010, 46(1): 97-103.
[7] ZHANG Guoying ZHANG Hui FANG Geliang YANG Lina. ELECTRONIC STRUCTURE OF DIFFERENT REGIONS AND ANALYSIS OF STRESS CORROSION MECHANISM OF Al--Zn--Mg--Cu ALLOYS[J]. 金属学报, 2009, 45(6): 687-691.
[8] LIANG Chu; XU Lingyan; YAO Chunxian; LAN Zhiqiang; LI Guangxu; GUO Jin. First-Principles Investigation on Effect of Co On Hydrogen Storage Properties of ZrMn2 Alloy[J]. 金属学报, 2008, 44(3): 351-356 .
[9] Liu Guili. The study on Ti alloys stress corrosion mechanicby recursion method[J]. 金属学报, 2007, 43(3): 249-253 .
[10] TAO Huijin; XIE Youqing; PENG Hongjian; YU Fangxin; LIU Ruifeng; LI Xiaobo. Temperature Dependence of tom States and Physical Properties of fcc-, metastable hcp- and bcc- Cu[J]. 金属学报, 2006, 42(6): 565-571 .
[11] JIAN Xiaoling. Investigations of Electronic Structures and Bond Characteristics of ZrMn2 Alloy and Its Hydride by First Principle[J]. 金属学报, 2006, 42(2): 123-128 .
[12] ZHANG Xiaozhong; ZHANG Lina; MA Yue; QI Junjie; YUAN Jun. Electronic Structure Characterization of Bonding of Grain Boundaries and Fracture Mode of Steels[J]. 金属学报, 2005, 41(6): 617-621 .
[13] DONG Jianmin; LI Hua; ZHANG Changwen; PAN Fengchun; WANG Yongjuan; ZHEN Peng. Electronic structure and magnetism of clusters Nin(n=2-6)[J]. 金属学报, 2005, 41(3): 242-244 .
[14] SONG Yan; YANG Rui; LI Dong; HU Zhuangqi(Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). ELECTRONIC STRVCTURE ANALYSIS OF PRIMARY SLIP PLANES IN HEXAGONAL CLOSE-PACKED METALS[J]. 金属学报, 1998, 34(7): 673-677.
[15] LI Hua; DONG Jianmin; MEI Lianmpo; HU Jifan; GAO Ruwei; DING Xuehou (Shandong University; Jinan 250100) (Manuscript received 1996-08-26; in revised form 1996- 12-26). STUDY ON THE EXCHANGE SPLITTING AND MAGNETISM OF IRON CLUSTERS[J]. 金属学报, 1997, 33(8): 791-796.
No Suggested Reading articles found!