|
|
MODELLING THE BRITTLE-DUCTILE TRANSITION |
P. B. Hirsch FRS(Department of Materials; University of Oxford; Parks Road; Oxford OX1 3 PH; UK Manuscript received ) |
|
Cite this article:
P. B. Hirsch FRS(Department of Materials; University of Oxford; Parks Road; Oxford OX1 3 PH; UK Manuscript received ). MODELLING THE BRITTLE-DUCTILE TRANSITION. Acta Metall Sin, 1997, 33(3): 225-232.
|
Abstract Many crystalline solids fail by cleavage at low temperatures. and by plastic processes at high temperatures. In the transition region cleavage failure occurs at stresses increasing with increasing temperature. reflecting a decrease in yield stress. and a consequent increase of plasticity around the crack tip. Crack tip plasticity blunts the crack and shields it through compressive stresses in the plastic zone. This paper gives a brief review of a model of the brittle-ductile transition in which the shielding is calculated from a plastic zone formed by the generation (from a source). motion and interaction of dislocations moving on a slip plane containing the crack tip. and obeying a velocity/stress/temperature law. The application of the model to experiments is discussed.
|
Received: 18 March 1997
|
1 A. Keily, W.R. Tyson and A.H. Cottrell, Philos Mag. 15 (1967) 567. 2 J.R. Rice, R. Thomson, Philos. Mad. 29 (1974) 73. 3 C. Schoeck, Philos Mad. A63 (1991 ) 111. 4 J.R. Rice, J. Mech. Phys. Solids 40 (1992) 239. 5 J.R. Rice and C.E. Beltz, J. Mech. Phys. Solid 42 (1994) 233. 6 P.B. Hirsch, S.G. Roberts and J. Samuels, Proc. R. Soc. London A421 (1989) 25. 7 X. Maeda and S. Fujita, Lattice Defects Ceramics 2 (1989) 25. 8 M. Brede and P. Haasen, Acla Melall. 36 (1988) 2003. 9 H. Huang and W.W. Gerberich, Acta Melall. Maler. 42 (194) 639. 10 V.R. Nitzsche and K.J. Hsia, Maler Sci. Eng. A176 (1994) 155. 11 P.B. Hirsch and S.G. Roberts, Philos. Mad. A64 (1991) 55. 12 P.B. Hirsch and S.G. Roberts, Acla Melall. Mater. 44 (1996) 2361. 13 P.B. Hirsch and S.G. Roberts, Philos. Trans. R. Soc. London, in press. 14 F.C. Serbena, PhD D Dissertation, University of Oxford (1995). 15 F.C. Serbena, S.G. Roberts and P.B. Hirsch, Ser. Metall. Mater., in press. 16 V. Lakshmanan and J.C.M. Li, Mater. Sci. Eng. A104 (1988) 95. 17 I.-H. Lin and R. Thomson, Acta Melall. 34 (1986) 187 18 R. Thomson, Physics of Fracture, in Soild State Phsysics(39), eds. H. Ehrenreich and D. Turnbull(Academic Press, London, 1986)p. 1-129. 19 S.G. Roberts, P.B. Hirsch, A.S. Booth, M. Ellis and F.C. Serbena. Phys. Scr. T49 (J993) 420. 20 S.G. Roberts, A.S. Booth and P.B. Hirsch, Maler. Sci. Eng. A176 (1994) 91. 21 P.B. Hirsch, Crack-tip plasticity and quasi-brittle fracture of single crystals. in Plastic Deformationof Ceramics, eds. R. Bradt, C.Brooks and J. Routbort (Plenum Press, New York. 1995) p. 1-20 22 R.O. Ritchie, J.F. Knott and J.R. Rice, J. Mech. Phys. Solids 21 (1973) 395. 23 M. Ellis, PhD Dissertation, University of Oxford (1991). 24 T. Imura and H. Saka, Mem. Fac. Nagoya Univ. 28 (1976) 55. 25 J. Weertman, J.uH. Lin and R. Thomson, Acta Metall. 31 (1983) 473. 26 J.R. Patel and A.R. Chaudhuri, Phys. Rev. 143 (1966) 601. 27 J. Heslop and N.J. Petch, Philos. Mag. 3 (1958) 1128. 28 A.C. Koo, Trans. AIME 280 (1963) 227. 29 M.F. Ashby and J.D. Embury, Scr. Metall. 19 (1985) 557. 30 M. Creager and P.C. Paris, Int. J. Fract. Mech. 3 (1967) 247. |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|