Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (9): 1105-1111    DOI: 10.3724/SP.J.1037.2011.00281
论文 Current Issue | Archive | Adv Search |
PREPARATION OF NANO-SIZED SiC REINFORCED NiTi SHAPE MEMORY COMPOSITES AND THEIR MECHANICAL PROPERTIES AND DAMPING BEHAVIOR
JIANG Hongjie, KE Changbo, CAO Shanshan, MA Xiao, ZHANG Xinping
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
Cite this article: 

JIANG Hongjie KE Changbo CAO Shanshan MA Xiao ZHANG Xinping. PREPARATION OF NANO-SIZED SiC REINFORCED NiTi SHAPE MEMORY COMPOSITES AND THEIR MECHANICAL PROPERTIES AND DAMPING BEHAVIOR. Acta Metall Sin, 2011, 47(9): 1105-1111.

Download:  PDF(1671KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  NiTi shape memory alloys have attracted significant attention for applications in various fields in the past decades. Although porous NiTi alloys exhibit lower density compared with the dense ones, they are inevitably lower in strength, storage modulus and damping capacity. Therefore, it is imperative to study and improve the compressive performance and storage modulus in porous NiTi alloys. In this study, the nano-sized SiC particle reinforced NiTi shape memory alloy based composites (SiC/NiTi) have been successfully fabricated by means of a step powder-sintering method, which show unique characteristics of lightweight, high strength and stable superelasticity. The fabricated SiC/NiTi composites possess almost the same equivalent strength compared with dense NiTi alloys. On the other hand, they are in the nature of higher strength, including compressive strength and equivalent compressive strength, than porous NiTi alloys. Furthermore, the strength increases with increasing contents of SiC particles. It has been indicated that the addition of SiC particles has a slight influence on the phase composition of the SiC/NiTi composites, while the martensitic phase transformation temperatures of the composites keep unchanged compared with the NiTi alloy without SiC reinforcement. Meanwhile, the fabricated composites inherit the high damping performance of the NiTi matrix, and thus exhibit a high storage modulus.
Key words:  NiTi shape memory alloy      nano-sized SiC particle      composite      mechanical property      damping     
Received:  04 May 2011     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50871039 and 50801029) and the Fundamental Research Funds for the Central Universities (No.2011ZM0001)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00281     OR     https://www.ams.org.cn/EN/Y2011/V47/I9/1105

[1] Miyazaki S, Otsuka K. Trans ISIJ, 1989; 29: 353

[2] Graesser E J, Cozzarelli F A. J EngMech, 1991; 117: 2590

[3] Aiken I D, Nims K D, Whittaker A S, James M K, Eeri M. Earthq Spectra, 1993; 9: 335

[4] Van Humbeeck J. J Alloys Compd, 2003; 355: 58

[5] Li D S, Zhang Y P, Xiong Z P, Zhang X P. Acta Metall Sin, 2008; 44: 995

(李大圣, 张宇鹏, 熊志鹏, 张新平. 金属学报, 2008; 44: 995)

[6] Li B Y, Rong L J. J Mater Res, 1998; 13: 2847

[7] Yuan B, Chung C Y, Zhang X P, Zeng M Q, Zhu M. Smart Mater Struct, 2005; 14: S201

[8] Zhang Y P, Li D S, Zhang X P. Scr Mater, 2007; 57: 1020

[9] Yang Y, Lan J, Li X C. Mater Sci Eng, 2004; A386: 284

[10] Li D S, Zhang X P, Xiong Z P, Mai Y W. J Alloys Compd, 2010; 490: 15

[11] Maruyama B, Hunt W. JOM, 1999; 11: 59

[12] Contreras A, Angeles–Ch´avez C, Flores O, Perez R. Mater Charact, 2007; 58: 685

[13] Zhang Y P, Yuan B, Zeng M Q, Chung C Y, Zhang X P. J Mater Process Technol, 2007; 439: 192

[14] Kuang Y H, Ngai T, H G, Li Y Y. J Alloys Compd, 2009; 209: 4607

[15] Gale W F, Totemeier T C. Smithell Metals Reference Book. Netherlands: Elsevier, 2004: 9

[16] Ke C B, Ma X, Zhang X P. Acta Metall Sin, 2011; 47: 129

(柯常波, 马骁, 张新平. 金属学报, 2011; 47: 129)

[17] Rao G B, Wang J Q, Han E H, Ke W. Acta Metall Sin, 2002; 38: 575

(饶光斌, 王俭秋, 韩恩厚, 柯 伟. 金属学报, 2002; 38: 575)

[18] Zhang X P, Liu H Y, Yuan B, Zhang Y P. Mater Sci Eng, 2008; A481: 170

[19] Li D S. PhD Thesis, South China University of Technology, Guangzhou, 2009

(李大圣. 华南理工大学博士论文, 广州, 2009)

[20] Zhao J S. The Basis of Dislocation Theory. Beijing: National Defense Industry Press, 1989: 148

(赵敬世. 位错理论基础. 北京: 国防工业出版社, 1989: 148)

[21] Lin H C, Wu S K, Yeh M T. Metall Mater Trans, 1993; 24A: 2189

[22] Nishiyama K, Yamanaka M, Omori M, Umekawa S. Mater Sci Lett, 1990; 9: 526

[23] Gao M X, Oliveira F J, Pan Y, Yang L, Baptista J L, Vieira J M. Intermetallics, 2005; 13: 406

[24] Wang H M, Wang C M, Cai L X. Surf Coat Technol, 2003; 168; 202

[25] Cai W, Lu X L, Zhao L C. Mater Sci Eng, 2005; A394: 78
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[14] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[15] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
No Suggested Reading articles found!