Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (8): 949-955    DOI:
论文 Current Issue | Archive | Adv Search |
MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND
CAI Zhaozhen; ZHU Miaoyong
School of Materials and Metallurgy; Northeastern University; Shenyang 110004
Cite this article: 

CAI Zhaozhen ZHU Miaoyong. MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND. Acta Metall Sin, 2009, 45(8): 949-955.

Download:  PDF(1522KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The solidification of molten steel in continuous casting mold is a complicated nonequilibrium process with high cooling rate of 10—100 ℃/s. At such a cooling rate, the segregation of the solute elements such as C, Si, Mn, P and S in brittle temperature range (ΔθB) will vary with their initial contents and influence on the thermal strain significantly which could greatly increase the incidence of surface defects of strand. In this paper, a microsegregation model of solute elements in mushy zone with δ/γ transformation during solidification was established based on the regular hexagon transverse cross section of dendrite shape proposed by Ueshima by finite difference method under the non-equilibrium solidification condition at 10 ℃/s of cooling rate and the brittle temperaturerange ΔθB was determined. The distribution characteristics of solute elements and the effect of their segregations on ΔθB  and thermal strin were nvestigatedTe results show that both P and S are the most serious segregation elements in final stage of solidification and affect on ΔθB  sinificantly together with carbon content in molten steel. The mechanism that increasing contents of P and S may incrasthe probability of longitudinal surface crack for continuous casting strand was presented by calculatng the change law of thermal strain with carbn content under different of P and S contents.

Key words:  continuous casting      microsegregation      longitudinal surface cracks      brittle temperature range      thermal strain     
Received:  15 January 2009     
ZTFLH: 

TG777

 
Fund: 

Supported by Program for New century Excellent Talents in University (No. NCET–04–0285)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I8/949

[1] Konishi J, Militzer M, Brimacombe J K, Samarasekera I V. Metall Mater Trans, 2002; 33B: 413
[2] Thomas B G, Brimacombe J K, Samarasekera I V. Trans Iron Steel Soc AIME, 1986; 7: 21
[3] Kim K, Han H N, Yeo T, Lee Y, Oh K H and Lee D N. Ironmaking Steelmaking, 1997; 24: 249
[4] Kobayashi S, Nagamichi T, Gunji K. Trans Iron Steel Inst Jpn, 1988; 28: 543
[5] Ueshima Y, Mizoguchi S, Matsumiya T, Kajioka H. Metall Mater Trans, 1986; 17B: 845
[6] Kim K, Yeo T, Oh K H, Lee D N. ISIJ Int, 1996; 36: 284
[7] Suzuki M, Yamaoka Y. Mater Trans, 2003; 44: 836
[8] Muojekwu C A, Samarasekera I V, Brimacombe J K. Metall Mater Trans, 1995; 26B: 361
[9] Zhu Z Y, Wang X H, Wang W J, Zhang J M. In: The Chinese Society for Metals ed., Proceedings of Asia Steel International Conference, Beijing: Metallurgical Industry Press, 2000: 358
[10] Suni J. PhD thesis, of Carnegie Mellon University, New York, 1991
[11] EL–Bealy M, Thomas B G. Metall Mater Trans, 1996; 27B: 689
[12] Kawawa T. Tekko–Binran (Handbook for Steel), Tokyo: ISIJ, 1981, 1: 205
[13] Schmidtmann E, Rakoski F. Archiv Eisenhuttenwesen, 1983; 54: 357
[14] Shin G, Kajitani T. Suzuki T, Umeda T. Tetsu Hagane, 1992; 78: 587
(申 健, 尾谷敏之, 铃木俊夫, 梅田高照. 铁と钢, 1992; 78: 587)
[15] Saeki T, Ooguchi S, Mizoguchi S, Yamamoto T, Mrsumi H, Tsuneoka, A. Tetsu Hagan´e, 1982; 68: 1173
(佐伯毅, 大口滋, 鞲ロ庄三, 山木利树, 三隅秀幸, 常冈zong, 铁と钢, 1982; 68: 1173)
[16] LI C S, Thomas B G. Metall Mater Trans, 2004; 35B: 1151
[17] Clyne T W, Wolf M, Kurz W. Metall Mater Trans, 1982; 13B: 259
[18] Davies G J, Shin Y. K. Solidification Technology in the Foundry and Cast House, London: the Metal Society, 1979: 517
[19] Matsumiya T, Saeki T, Tanaka J, Ariyoshi T. Tetsu Hagane, 1982; 68: 1782
(松宫澈, 佐伯毅, 田中纯, 有吉敏彦. 铁と钢, 1982; 68: 1782)

[1] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[2] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[3] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[4] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[5] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[6] CAI Laiqiang, WANG Xudong, YAO Man, LIU Yu. Meshless Method for Non-Uniform Heat Transfer/Solidification Behavior of Continuous Casting Round Billet[J]. 金属学报, 2020, 56(8): 1165-1174.
[7] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[8] LI Yaqiang, LIU Jianhua, DENG Zhenqiang, QIU Shengtao, ZHANG Pei, ZHENG Guiyun. Peritectic Solidification Characteristics and Mechanism of 15CrMoG Steel[J]. 金属学报, 2020, 56(10): 1335-1342.
[9] Chunlei WU,Dewei LI,Xiaowei ZHU,Qiang WANG. Influence of Electromagnetic Swirling Flow in Nozzle on Solidification Structure and Macrosegregation of Continuous Casting Square Billet[J]. 金属学报, 2019, 55(7): 875-884.
[10] GUO Junli, WEN Guanghua, FU Jiaojiao, TANG Ping, HOU Zibing, GU Shaopeng. Influence of Cooling Rate on the Contraction of Peritectic Transformation During Solidification of Peritectic Steels[J]. 金属学报, 2019, 55(10): 1311-1318.
[11] Zibing HOU, Rui XU, Yi CHANG, Jianghai CAO, Guanghua WEN, Ping TANG. Time-Series Fluctuation Characteristics of Segregation Carbon Element Distribution Along Casting Direction in High Carbon Continuous Casting Billet[J]. 金属学报, 2018, 54(6): 851-858.
[12] Yuan HOU, Zhongming REN, Jiang WANG, Zhenqiang ZHANG, Xia LI. Effect of Longitudinal Static Magnetic Field on the Columnar to Equiaxed Transition in Directionally Solidified GCr15 Bearing Steel[J]. 金属学报, 2018, 54(5): 801-808.
[13] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[14] Miaoyong ZHU, Wentao LOU, Weiling WANG. Research Progress of Numerical Simulation in Steelmaking and Continuous Casting Processes[J]. 金属学报, 2018, 54(2): 131-150.
[15] Qiang WANG, Ming HE, Xiaowei ZHU, Xianliang LI, Chunlei WU, Shulin DONG, Tie LIU. Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes[J]. 金属学报, 2018, 54(2): 228-246.
No Suggested Reading articles found!