Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (6): 652-656    DOI:
论文 Current Issue | Archive | Adv Search |
EBSD ANALYSES OF THE MICROSTRUCTURAL EVOLUTION AND CSL CHARACTERISTIC GRAIN BOUNDARY OF COARSE--GRAINED NiAl ALLOY DURING PLASTIC DEFORMATION
HU Jing 1; LIN Dongliang2; WANG Yan1
1. School of Materials Science and Engineering; Jiangsu Polytechnic University; Changzhou 213016
2. School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai 200030
Cite this article: 

HU Jing LIN Dongliang WANG Yan. EBSD ANALYSES OF THE MICROSTRUCTURAL EVOLUTION AND CSL CHARACTERISTIC GRAIN BOUNDARY OF COARSE--GRAINED NiAl ALLOY DURING PLASTIC DEFORMATION. Acta Metall Sin, 2009, 45(6): 652-656.

Download:  PDF(1984KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructural evolution and the coincidence site lattice (CSL) characteristic grain boundary of coarse--grained NiAl alloy during plastic deformation at 1075℃ with the initial strain rate of 8.75×10-4 s-1 were studied using EBSD technique. Before deformation most grain boundaries are high angle boundaries, in which several particular angles are predominant, but low angle grain boundaries with misorientation less than 5° occurred successively during deformation. With the increase of the deformation, the misorientations of the newly--formed low angle grain boundaries increase, and grain boundaries with larger misorientation between 6°---15° are formed, and finally high angle grain boundaries with misorientation larger than 15° are formed. There exists a dynamic equilibrium between the formation rate of new low--angle grain boundaries and the rate of changing into higher--angle grain boundaries. Turning of low--angle into higher--angle grain boundaries results in the refinement of grains. The results also show that plastic deformation can change the CSL characteristic grain boundaries of the coarse--grained NiAl, which may improve mechanical properties of the alloy at room temperature.

Key words:  NiAl, intermetallics      grain boundary      electron back scatter diffraction (EBSD)      microstructural evolution      coincidence site lattice (CSL)     
Received:  10 July 2008     
ZTFLH: 

TG113.25

 
Fund: 

Supported by National Natural Science Foundation of China (No. 59895150)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I6/652

[1] Li H T, Guo J T, Ye H Q. Rare Met Mater Eng, 2006; 35:1162
(李虎田, 郭建亭, 叶恒强. 稀有金属材料与工程, 2006; 35: 1162)
[2] Chokshi A H, Mukherjee A K, Langdon T G. Mater Sci Eng, 1993; R10: 237
[3] Mukherjee A K, Mishra R S. Mater Sci Forum, 1997; 243–245: 609
[4] Nieh T G, Wadsworth J. Mater Sci Eng, 1997; A239–240: 88
[5] Hu J, Lin D L. J Alloys Compd, 2006; 426: 162
[6] Hu J, Lin D L. Mater Sci Eng, 2006; A441: 142
[7] Jiang D M, Lin D L. Mater Lett, 2002; 57: 747
[8] Hu J, Lin D L. Mater Lett, 2004; 58: 1297
[9] Lin D L. Crystal Defects. Shanghai: Shanghai Jiao Tong University Press, 1996: 69
(林栋樑. 晶体缺陷. 上海: 上海交通大学出版社, 1996: 69)
[10] Zhang K, Wang W G, Fang X Y, Guo H. Acta Metall Sin,2008; 44: 652
(张坤, 王卫国, 方晓英, 郭 红. 金属学报, 2008; 44: 652)
[11] Watanabe T. Res Mech, 1984; 11: 47
[12] Wang W G, Zhou B X, Feng L, Zhang X, Xia S. Acta Metall Sin, 2006; 42: 715
(王卫国, 周邦新, 冯柳, 张欣, 夏爽. 金属学报, 2006; 42: 715)
[13] Cao S Q, Zhang J X, Wu J S, Chen J G. J Iron Steel Res,2005; 17: 51
(曹圣泉, 张津徐, 吴建生, 陈家光. 钢铁研究学报, 2005; 17: 51)
[14] Jiang D M, Ning J L, Sun J F, Hu Z M, Hou Y. Trans Nonferrous Met Soc China, 2008; 18: 248
[15] Jiang J, Godfrey A, Liu W, Liu Q. Mater Sci Eng, 2008; A483–484: 576
[16] Hu J. PhD Thesis, Shanghai Jiao Tong University, 2004
(胡静. 上海交通大学博士学位论文, 2004)

[1] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[6] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[7] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[8] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[9] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[10] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[11] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[12] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
[13] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[14] SUN Jia, LI Xuexiong, ZHANG Jinhu, WANG Gang, YANG Mei, WANG Hao, XU Dongsheng. Phase Field Modeling of Formation Mechanism of Grain Boundary Allotriomorph in βα Phase Transformation in Ti-6Al-4V Alloy[J]. 金属学报, 2020, 56(8): 1113-1122.
[15] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
No Suggested Reading articles found!