Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (10): 1231-1234     DOI:
Research Articles Current Issue | Archive | Adv Search |
MAGNETOMECHANICAL COUPLING FACTOR (k33) OF Tb0.36Dy0.64(Fe0.85Co0.15)2 <110> ORIENTED CRYSTALS
BAI Xia-Bing 白夏冰;MA Tian-Yu;
北京航空航天大学
Cite this article: 

BAI Xia-Bing; MA Tian-Yu. MAGNETOMECHANICAL COUPLING FACTOR (k33) OF Tb0.36Dy0.64(Fe0.85Co0.15)2 <110> ORIENTED CRYSTALS. Acta Metall Sin, 2008, 44(10): 1231-1234 .

Download:  PDF(590KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  <110> oriented crystals Tb0.36Dy0.64(Fe0.85Co0.15)2 have been prepared by zone melting directional solidification method. The magnetomechanical coupling factor (k33) was determined by resonance/anti-resonance method in low bias fields. It was found that k33 is sensitive to both the bias field and the compressive pre-stress. Without compressive pre-stress, optimum k33 can be obtained with the value of 0.513 at a bias field of 50.9 kA/m. When applying a compressive pre-stress of 10 MPa, relatively lower k33 was obtained. It was attributed that extra energy of 71° domain wall is induced by the compressive pre-stress, which hinders the movement of magnetic moments or domain walls, decreasing the transition efficiency between the magnetic and mechanical energies.
Key words:  Magnetostriction      Magnetomechanical coupling factor      Bias field      Compressive pre-stress      
Received:  22 February 2008     
ZTFLH:  TG113  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I10/1231

[1]Clark A E.Ferromagnetic Materials.Vol.1,Amsterdam: North-Holland,1980:531
[2]Jiles D C.Acta Mater,2003;51:5907
[3]Zhang T L,Jiang C B,Zhang H,Xu H B.Smart Mater Sturct,2004;13:473
[4]Greenough R D,Shulze M P,Jenner A G I,Wilkinson A J.IEEE Trans Magn,1991;27:5346
[5]Abell J S,Butler D,Greenough R D,Joyce V,Pitman K C.J Magn Magn Mater,1986;62:6
[6]Kendall D,Piercy A R.IEEE Trans Magn,1990;26:1837
[7]Jiang C B,Zhao Y,Xu H B.Acta Metall Sin,2004;40: 373 (蒋成保.赵岩,徐惠彬.金属学报,2004;40:373)
[8]Ma T Y,Jiang C B,Xu H B.Appl Phys Lett,2005;86: 162505
[9]Zhao Y,Jiang C B,Zhang H,Xu H B.J Alloy Compd, 2003;354:263
[10]Bai X B,Jiang C B,Gong S K.Acta Metall Sin,2007;43: 413 (白夏冰,蒋成保,宫声凯.金属学报,2007;43:413)
[11]Ma T Y,Yan M,Zhang J J,Luo W,Jiang C B,Xu H B. Appl Phys Lett,2007;90:102502
[12]Clark A E,Teter J P,McMasters 0 D.J Appl Phys,1988; 63:3910
[13]Branwood A,Janio A L,Piercy A R.J Appl Phys,1987; 61:3796
[14]Claeyssen F,Colombani D,Tessereau A,Ducros B.IEEE Trans Magn,1991;27:53432
[1] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
[2] Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets[J]. 金属学报, 2017, 53(1): 90-96.
[3] LIU Yin, LIU Tie, WANG Qiang, WANG Huimin, WANG Li, HE Jicheng. EFFECT OF HIGH MAGNETIC FIELD ON CRYSTAL ORIENTATION, MORPHOLOGY AND MAGNETOSTRICTION OF TbFe2 AND Tb0.27Dy0.73Fe1.95 ALLOYS DURING HEAT TREATMENT PROCESS[J]. 金属学报, 2013, 49(9): 1148-1152.
[4] YAO Zhanquan, ZHAO Zengqi, JIANG Liping,HAO Hongbo, WU Shuangxia,ZHANG Guangrui, YANG Jiandong. EFFECTS OF Ce ADDITION ON THE MICROSTRUCTURE AND MAGNETOSTRICTION OF Fe83Ga17 ALLOY[J]. 金属学报, 2013, 49(1): 87-91.
[5] LI Xiaocheng DING Yutian HU Yong. MICROSTRUCTURE AND MAGNETOSTRICTION OF THE Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) ALLOYS[J]. 金属学报, 2012, 48(1): 11-15.
[6] CUI Yue JIANG Chengbao XU Huibin. INTRINSIC MAGNETOSTRICTION OF Tb-Dy-Fe-Co ALLOY[J]. 金属学报, 2011, 47(2): 214-218.
[7] CHEN Libiao ZHU Xiaoxi LI Chuan LIU Jinghua JIANG Chengbao XU Huibin. <001> ORIENTED SINGLE CRYSTAL GROWTH AND MAGNETOSTRICTION OF Fe81Ga19 ALLOYS[J]. 金属学报, 2011, 47(2): 169-172.
[8] ZHANG Changsheng MA Tianyu YAN Mi PEI Yongmao GAO Xu. MAGNETOMECHANICAL DAMPING CAPACITY OF <110> ORIENTED Tb0.36Dy0.64(Fe0.85Co0.15)2 ALLOY[J]. 金属学报, 2009, 45(6): 749-753.
[9] ZHU Xiaoxi ZHANG Tianli JIANG Chengbao. ELECTROMECHANICAL COUPLING COEFFICIENT (K33) OF Fe72.5Ga27.5 MAGNETOSTRICTIVE ALLOY[J]. 金属学报, 2009, 45(4): 455-459.
[10] JIA Ao ZHANG Tianli MENG Hao JIANG Chengbao. MAGNETOSTRICTION AND EDDY CURRENT LOSS OF BONDED GIANT MAGNETOSTRICTIVE PARTICLE COMPOSITES[J]. 金属学报, 2009, 45(12): 1473-1478.
[11] Gao Xue-xu. Texture and magnetostriction in rolled Fe-Ga based alloy[J]. 金属学报, 2008, 44(9): 1031-1034 .
[12] LIN Jian; Haiyan ZHAO; Zhipeng CAI; Yongping LEI. STUDY ON THE RELATIONSHIP BETWEEN MAGNETIC FIELD AND RESIDUAL STRESS IN STEEL MATERIALS[J]. 金属学报, 2008, 44(4): 451-456 .
[13] ZHANG Su; LIU Jinghua; JIANG Chengbao; XU Huibin. Melt quenched Fe81Ga19 magnetostriction alloy[J]. 金属学报, 2008, 44(3): 361-364 .
[14] Xu Yun-Wei; MA Tian-Yu; Mi YAN. MAGNETOSTRICTION IN ANTIFERROMAGNETIC Fe1-xMnx (0.30 ≤ x ≤ 0.55) ALLOYS[J]. 金属学报, 2008, 44(10): 1235-1237 .
[15] MA Tianyu; YAN Mi; WANG Qingwei. Homogeneity of Magnetostriction of Tb--Dy--Fe—Co<110> Oriented Alloy Rod[J]. 金属学报, 2007, 43(7): 688-692 .
No Suggested Reading articles found!