Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (2): 214-218    DOI: 10.3724/SP.J.1037.2010.00449
论文 Current Issue | Archive | Adv Search |
INTRINSIC MAGNETOSTRICTION OF Tb-Dy-Fe-Co ALLOY
CUI Yue, JIANG Chengbao, XU Huibin
Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191
Cite this article: 

CUI Yue JIANG Chengbao XU Huibin. INTRINSIC MAGNETOSTRICTION OF Tb-Dy-Fe-Co ALLOY. Acta Metall Sin, 2011, 47(2): 214-218.

Download:  PDF(638KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The distribution of Co, the intrinsic magnetism and magnetostriction of quaternary Tb-Dy-Fe-Co alloy were investigated. The SEM image showed the matrix (Laves phase) and the rare-earth (RE) rich phase in the annealed samples. The Co content (atomic fraction) in the RE rich phase was 21.18%, much higher than that in the matrix (9.36%). XRD patterns showed that Co partial substitution for Fe did not change the structure of MgCu2-type cubic Laves phase, contributing to the giant magnetostriction. Curie temperature Tc was increased remarkably with Co addition, resulting in wider operating temperature. The magnetocrystalline anisotropy compensation by Co addition was beneficial to improving the magnetostriction in low field. The solidified orientation influences the testing of intrinsic magnetostriction. In order to ensure the accuracy in the measurements, the equiaxed Tb-Dy-Fe-Co samples were prepared. The saturated magnetostrictive constant λs was tested. λ111 and λ100 were calculated by the cleavage of (440) diffraction peak of Laves phase. Compared with Terfenol-D alloy, λ111 in the Co-doped sample decreased slightly, but λ100 increased evidently and λs almost remained unchanged.
Key words:  element distribution      operating temperature      magnetic anisotropy      magnetostriction     
Received:  06 September 2010     
ZTFLH: 

TG113

 
Fund: 

Supported by National Funds for Distinguished Young Scholars (No.50925101), Funds for Creative Research Groups of China (No. 50921003})

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00449     OR     https://www.ams.org.cn/EN/Y2011/V47/I2/214

[1] Clark A E. Ferromagnetic Materials. Vol.1, Amsterdam: North–Holland, 1980: 531

[2] Jiles D C. Acta Mater, 2003; 51: 5907

[3] Sato K, Ishikawa Y, Mori K, Clark A E, Callen E. J Magn Magn Mater, 1986; 54–57: 875

[4] Shi Y G, Tang S L, Yu J Y, Zhai L, Zhang X K, Du YW, Yang C P. J Appl Phys, 2009; 105: 07A925

[5] Chelvane J A, Palit M, Basumatary H, Pandian S, Chandrasekaran V. Scr Mater, 2009; 61: 548

[6] Zheng X P, Zhang P F, Li F S, Cheng Z H, Shen B G. J Magn Magn Mater, 2009; 321: 3842

[7] Xu L H, Jiang C B, Xu H B. Appl Phys Lett, 2006; 89: 192507

[8] Jiang C B, Ma T Y, Xu H B. J Alloys Compd, 2008; 449: 156

[9] Clark A E, Teter J P, Wun–Fogle M. J Appl Phys, 1991; 69: 5771

[10] Ma T Y, Jiang C B, Xu X, Xu H B. J Alloys Compd, 2005; 388: 34

[11] Ma T Y, Jiang C B, Xiao F, Xu H B. J Alloys Compd, 2006; 414: 276

[12] Ma T Y, Jiang C B, Xu H B. Appl Phys Lett, 2005; 86: 162505

[13] Westwood P, Abell J S, Pitman K C. J Appl Phys, 1990; 67: 4998

[14] Chen X, Zhuang Y H, Yan J L, Fei F. J Alloys Compd, 2009; 479: 35

[15] Sayetat F. J Appl Phys, 1975; 46: 3619

[16] Guo Z J, Zhang Z D, Wang B W, Zhao X G, Geng D Y, Liu W. J Phys, 2001; 34D: 884

[17] Wan D F, Ma X L. Magnetic Physics, Beijing: Electronics Industry Press, 1999: 337

(宛德福, 马兴隆. 磁性物理学, 北京: 电子工业出版社, 1999: 337)

[18] Zhang H, Zeng D C. J Appl Phys, 2010; 107: 123918

[19] Tang Y J, Luo H L, Gao N F, Liu Y Y, Pan S M. Appl Phys Lett, 1995; 66: 388

[20] Liu J J, Ren W J, Li D, Sun N K, Zhao X G, Li J, Zhang Z D. Phys Rev, 2007; 75B: 064429
[1] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
[2] HE Xianmei, TONG Liuniu, GAO Cheng, WANG Yichao. Effect of Nd Content on the Structure and Magnetic Properties of Si(111)/Cr/Nd-Co/Cr Thin Films Prepared by Magnetron Sputtering[J]. 金属学报, 2019, 55(10): 1349-1358.
[3] Xiaoqin MA, Qingfeng ZHAN, Jincai LI, Qingfang LIU, Baomin WANG, Runwei LI. Influence of Oblique Sputtering on Stripe Magnetic Domain Structure and Magnetic Anisotropy of CoFeB Thin Films[J]. 金属学报, 2018, 54(9): 1281-1288.
[4] Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets[J]. 金属学报, 2017, 53(1): 90-96.
[5] LIU Yin, LIU Tie, WANG Qiang, WANG Huimin, WANG Li, HE Jicheng. EFFECT OF HIGH MAGNETIC FIELD ON CRYSTAL ORIENTATION, MORPHOLOGY AND MAGNETOSTRICTION OF TbFe2 AND Tb0.27Dy0.73Fe1.95 ALLOYS DURING HEAT TREATMENT PROCESS[J]. 金属学报, 2013, 49(9): 1148-1152.
[6] YAO Zhanquan, ZHAO Zengqi, JIANG Liping,HAO Hongbo, WU Shuangxia,ZHANG Guangrui, YANG Jiandong. EFFECTS OF Ce ADDITION ON THE MICROSTRUCTURE AND MAGNETOSTRICTION OF Fe83Ga17 ALLOY[J]. 金属学报, 2013, 49(1): 87-91.
[7] LI Xiaocheng DING Yutian HU Yong. MICROSTRUCTURE AND MAGNETOSTRICTION OF THE Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) ALLOYS[J]. 金属学报, 2012, 48(1): 11-15.
[8] FANG Yunzhang XU Qiming YE Huiqun FAN Xiaozhen QIU Jianfeng. MAGNETIC STRUCTURE OF RAPIDLY QUENCHED FeCo-BASED RIBBON ANNEALED UNDER TENSILE STRESS IN FLOWING ATMOSPHERE[J]. 金属学报, 2011, 47(4): 475-481.
[9] CHEN Libiao ZHU Xiaoxi LI Chuan LIU Jinghua JIANG Chengbao XU Huibin. <001> ORIENTED SINGLE CRYSTAL GROWTH AND MAGNETOSTRICTION OF Fe81Ga19 ALLOYS[J]. 金属学报, 2011, 47(2): 169-172.
[10] ZHANG Changsheng MA Tianyu YAN Mi PEI Yongmao GAO Xu. MAGNETOMECHANICAL DAMPING CAPACITY OF <110> ORIENTED Tb0.36Dy0.64(Fe0.85Co0.15)2 ALLOY[J]. 金属学报, 2009, 45(6): 749-753.
[11] ZHU Xiaoxi ZHANG Tianli JIANG Chengbao. ELECTROMECHANICAL COUPLING COEFFICIENT (K33) OF Fe72.5Ga27.5 MAGNETOSTRICTIVE ALLOY[J]. 金属学报, 2009, 45(4): 455-459.
[12] JIA Ao ZHANG Tianli MENG Hao JIANG Chengbao. MAGNETOSTRICTION AND EDDY CURRENT LOSS OF BONDED GIANT MAGNETOSTRICTIVE PARTICLE COMPOSITES[J]. 金属学报, 2009, 45(12): 1473-1478.
[13] Gao Xue-xu. Texture and magnetostriction in rolled Fe-Ga based alloy[J]. 金属学报, 2008, 44(9): 1031-1034 .
[14] LIN Jian; Haiyan ZHAO; Zhipeng CAI; Yongping LEI. STUDY ON THE RELATIONSHIP BETWEEN MAGNETIC FIELD AND RESIDUAL STRESS IN STEEL MATERIALS[J]. 金属学报, 2008, 44(4): 451-456 .
[15] ZHANG Su; LIU Jinghua; JIANG Chengbao; XU Huibin. Melt quenched Fe81Ga19 magnetostriction alloy[J]. 金属学报, 2008, 44(3): 361-364 .
No Suggested Reading articles found!