Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (10): 1235-1237     DOI:
Research Articles Current Issue | Archive | Adv Search |
MAGNETOSTRICTION IN ANTIFERROMAGNETIC Fe1-xMnx (0.30 ≤ x ≤ 0.55) ALLOYS
Xu Yun-Wei;MA Tian-Yu;;Mi YAN
浙江大学材化学院
Cite this article: 

Xu Yun-Wei; MA Tian-Yu; Mi YAN. MAGNETOSTRICTION IN ANTIFERROMAGNETIC Fe1-xMnx (0.30 ≤ x ≤ 0.55) ALLOYS. Acta Metall Sin, 2008, 44(10): 1235-1237 .

Download:  PDF(1028KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Antiferromagnetic Fe1-xMnx(x = 0.30, 0.35, 0.40, 0.50, 0.55) alloys have been prepared by induction melting method. A homogenization for 24 h at 1000℃ has been carried out on the samples, followed by furnace cooling to room temperature. The microstructure and magnetostrictive properties of Fe1-xMnx samples were investigated. It was found that when x≤0.40, Fe1-xMnx alloys consisted of fcc γand hcp ε phases with poor magnetostrictive property, and the volume proportion of εphase decreased with the increase of Mn content. When x>0.40, the samples were single fcc γ phase and possessed much better magnetostrictive performance. The magnetostriction of Fe0.50Mn0.50 sample reached 873×10-6 in 1.9T magnetic field. The large magnetostriction in γ-Fe-Mn alloy can be attributed to the magnetic-field-induced fcc→hcp structural transformation.
Key words:  Fe-Mn alloy      antiferromagnets      magnetostriction      magnetic-field-induced phase transformation      
Received:  17 January 2008     
ZTFLH:  TG113  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I10/1235

[1]Clark A E.Ferromagnetic Materials.Vol.1,Amsterdam: North-Holland Publishing Company,1980:531
[2]Ullakko K,Huang J K,Kantner C,O'Handley R C,Koko- tin V V.Appl Phys Lett,1996;69:1966
[3]Mahendiran R,Ibarra M R,Marquina C,Garcia-Landa B,Morellon L,Maignan A,Raveau B,Arulraj A,Rao C N R.Appl Phys Lett,2003;82:242
[4]Lavrov A N,Komiya S,Ando Y.Nature,2002;418:385
[5]Peng W Y,Zhang J H.Appl Phys Lett,2006;89:262501
[6]Srisukhumbowornchai N,Guruswamy S.J Appl Phys, 2002;92:5371
[7]Peng W Y,Deng H M,Zhang J H.Acta Metall Sin,2003; 39:1153 (彭文屹,邓华铭,张骥华.金属学报,2003;39:1153)
[8]Stanford N,Dunne D P,Monaghan B J.J Alloy Compd, 2007;430:107
[9]Kennedy S J,Hicks T J.J Magn Magn Mater,1989;81: 56
[10]Gomonay H,Loktev V M.J Phys:Condens Matter,2002; 14:3959
[11]Janossy A,Simon F,Feher T,Rockenbauer A,Korecz L, Chen C,Chowdhury A J S,Hodby W.J Phys Rev,1999; 59B:1176
[12]Akgun I,Durlu T N.Scr Metall Mater,1994;31:1361
[13]Marinelli P,Baruj A,Guillermet A F,Sade M.Z Metallkd, 2000;91:957
[1] WANG Shihong, LI Jian, CHAI Feng, LUO Xiaobing, YANG Caifu, SU Hang. Influence of Solution Temperature on γε Transformation and Damping Capacity of Fe-19Mn Alloy[J]. 金属学报, 2020, 56(9): 1217-1226.
[2] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
[3] Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets[J]. 金属学报, 2017, 53(1): 90-96.
[4] LIU Yin, LIU Tie, WANG Qiang, WANG Huimin, WANG Li, HE Jicheng. EFFECT OF HIGH MAGNETIC FIELD ON CRYSTAL ORIENTATION, MORPHOLOGY AND MAGNETOSTRICTION OF TbFe2 AND Tb0.27Dy0.73Fe1.95 ALLOYS DURING HEAT TREATMENT PROCESS[J]. 金属学报, 2013, 49(9): 1148-1152.
[5] YAO Zhanquan, ZHAO Zengqi, JIANG Liping,HAO Hongbo, WU Shuangxia,ZHANG Guangrui, YANG Jiandong. EFFECTS OF Ce ADDITION ON THE MICROSTRUCTURE AND MAGNETOSTRICTION OF Fe83Ga17 ALLOY[J]. 金属学报, 2013, 49(1): 87-91.
[6] LI Xiaocheng DING Yutian HU Yong. MICROSTRUCTURE AND MAGNETOSTRICTION OF THE Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) ALLOYS[J]. 金属学报, 2012, 48(1): 11-15.
[7] CHEN Libiao ZHU Xiaoxi LI Chuan LIU Jinghua JIANG Chengbao XU Huibin. <001> ORIENTED SINGLE CRYSTAL GROWTH AND MAGNETOSTRICTION OF Fe81Ga19 ALLOYS[J]. 金属学报, 2011, 47(2): 169-172.
[8] CUI Yue JIANG Chengbao XU Huibin. INTRINSIC MAGNETOSTRICTION OF Tb-Dy-Fe-Co ALLOY[J]. 金属学报, 2011, 47(2): 214-218.
[9] HUANG Shuke LIU Jianhui LI Chang'an ZHOU Danchen LI Ning WEN Yuhua. EFFECT OF PRE-DEFORMATION ON STACKING FAULT PROBABILITY AND DAMPING CAPACITY OF Fe-Mn ALLOY[J]. 金属学报, 2009, 45(8): 937-942.
[10] ZHANG Changsheng MA Tianyu YAN Mi PEI Yongmao GAO Xu. MAGNETOMECHANICAL DAMPING CAPACITY OF <110> ORIENTED Tb0.36Dy0.64(Fe0.85Co0.15)2 ALLOY[J]. 金属学报, 2009, 45(6): 749-753.
[11] ZHU Xiaoxi ZHANG Tianli JIANG Chengbao. ELECTROMECHANICAL COUPLING COEFFICIENT (K33) OF Fe72.5Ga27.5 MAGNETOSTRICTIVE ALLOY[J]. 金属学报, 2009, 45(4): 455-459.
[12] JIA Ao ZHANG Tianli MENG Hao JIANG Chengbao. MAGNETOSTRICTION AND EDDY CURRENT LOSS OF BONDED GIANT MAGNETOSTRICTIVE PARTICLE COMPOSITES[J]. 金属学报, 2009, 45(12): 1473-1478.
[13] Gao Xue-xu. Texture and magnetostriction in rolled Fe-Ga based alloy[J]. 金属学报, 2008, 44(9): 1031-1034 .
[14] LIN Jian; Haiyan ZHAO; Zhipeng CAI; Yongping LEI. STUDY ON THE RELATIONSHIP BETWEEN MAGNETIC FIELD AND RESIDUAL STRESS IN STEEL MATERIALS[J]. 金属学报, 2008, 44(4): 451-456 .
[15] ZHANG Su; LIU Jinghua; JIANG Chengbao; XU Huibin. Melt quenched Fe81Ga19 magnetostriction alloy[J]. 金属学报, 2008, 44(3): 361-364 .
No Suggested Reading articles found!