Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (1): 43-48     DOI:
Research Articles Current Issue | Archive | Adv Search |
EFFECTS OF ANNEALING TEMPERATURE ON INTENSITY AND DISTRIBUTION OF CRYSTAL TEXTURE IN Cu-12% Ag FILAMENTARY COMPOSITE
Liang Meng;
浙江大学金属材料研究所
Cite this article: 

Liang Meng. EFFECTS OF ANNEALING TEMPERATURE ON INTENSITY AND DISTRIBUTION OF CRYSTAL TEXTURE IN Cu-12% Ag FILAMENTARY COMPOSITE. Acta Metall Sin, 2008, 44(1): 43-48 .

Download:  PDF(430KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Cu-12% Ag (mass fraction) strengthened by double-phase filamentary composite was prepared by heavy drawing. The effect of annealing temperature on the intensity and distribution of crystal texture in both Cu and Ag phases was investigated by annealing the composite at different temperatures. With the increase of annealing temperature up to 400 °C, the <111> component intensity decreases and the <100> component intensity increases in Cu phase while the <111> component intensity in Ag phase changes insignificantly. Annealing at temperatures higher than 400 °C enhances the texture intensities in both Cu and Ag phases. The texture formed by heavy drawing in Ag phase is more stable than that in Cu phase for the composite annealed at lower temperatures. The interface migrating, structure aggregating, fiber glomerating, and grain propagating from recover and recrystallization in annealing process generally change the intensities of the texture components formed by heavy drawing to form annealing texture. Therefore, the annealing texture components have the same orientation indexes as the deformation texture components.
Key words:  Cu-Ag alloy      annealing temperatures      crystal texture      
Received:  18 April 2007     
ZTFLH:  TB331  
  TG146.3  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I1/43

[1]Zhang L,Yan F,Meng L.Mater Rev,2003;17(5):15 (张雷,颜芳,孟亮.材料导报,2003;17(5):15)
[2]Benghalem A,Morris D G.Acta Mater,1997;45:397
[3]Maeda H,Inoue K,Kiyoshi T,Asano T,Sakai Y,Takeuchi T.Physica,1996;216B:141
[4]Freudenberger J,Kozlova N,Gaganov A,Schultz L,Witte H,Jones H.Cryogenics,2006;46:724
[5]Grünberger W,Heilmaier M,Schultz L.Physica,2001; 643B:294
[6]Ohsaki S,Yamazaki K,Hono K.Scr Mater,2003;48:1569
[7]Sakai Y,Schneider-Muntau H J.Acta Mater,1997;45: 1017
[8]Han K,Vasquez A A,Xin Y,Kalu P N.Acta Mater,2003; 51:767
[9]He J,Liu J B,Meng L.Acta Metall Sin,2007;43:643 (贺佳,刘嘉斌,孟亮.金属学报,2007;43:643)
[10]Hong S I,Hill M A.Acta Mater,1998;46:4111
[11]Hong S I,Hill M A.Mater Sci Eng,1999;A264:151
[12]Kwon H J,Hong S I.J Alloys Compd,2001;32:161
[13]Yan F,Meng L,Zhang L.Acta Metall Sin,2004;40:891 (颜芳,孟亮,张雷.金属学报,2004;40:891)
[14]Yang J X.Physical Foundation of Metals Plastic Defor- mation.Beijing:Metallurgical Industry Press,1988:248 (杨觉先.金属塑性变形物理基础.北京:冶金工业出版社,1988:248)
[15]Zhang X Y.Crystal Texture of Metals and Alloys.Beijing: Science Press,1976:79 (张信钰.金属和合金的织构.北京:科学出版社,1976:79)V
[1] Xiaowei ZUO,Rui GUO,Bailing AN,Lin ZHANG,Engang WANG. MICROSTRUCTURE, HARDNESS AND ELECTRICAL RESISTIVITY OF DIRECTIONALLY SOLIDIFIEDCu-6%Ag ALLOY UNDER A TRANSVERSE MAGNETIC FIELD[J]. 金属学报, 2016, 52(2): 143-150.
[2] XIANG Hongliang, GUO Peipei, LIU Dong. MICROSTRUCTURE AND ANTIBACTERIAL PROPERTIES OF Ag-BEARING DUPLEX STAINLESS STEEL[J]. 金属学报, 2014, 50(10): 1210-1216.
[3] Liang Meng. STEPPED INTERFACE AND CRYSTAL ORIENTATION IN THE EUTECTIC STRUCTURE OF Cu-71.8 wt.% Ag ALLOY[J]. 金属学报, 2007, 43(8): 803-806 .
[4] . [J]. 金属学报, 2007, 43(6): 643-647 .
[5] LIU Jiabin; Liang Meng. STRAIN COMPATIBILITY BEHAVIOR IN Cu-6%Ag ALLOY DURING DRAWING INTO FILAMENTARY STRUCTURE[J]. 金属学报, 2006, 42(9): 931-936 .
[6] LIU Jiabin; ZHANG Lei; MENG Liang. EFFECTS OF Ag CONTENT ON MICROSTRUCTURE AND PROPERTIES OF THE FILAMENT STRENGTHENED Cu-Ag ALLOYS[J]. 金属学报, 2006, 42(9): 937-941 .
[7] ZHANG Lei; MENG Liang. Effects of drawing strain on formation of filamentary structure and conductivity for Cu-12%Ag alloy[J]. 金属学报, 2005, 41(3): 255-259 .
No Suggested Reading articles found!