Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (4): 439-443     DOI:
Research Articles Current Issue | Archive | Adv Search |
The stability of Cr3C2/Ni3Al Composite at elevated temperature
;;;;
钢铁研究总院高温所
Cite this article: 

. The stability of Cr3C2/Ni3Al Composite at elevated temperature. Acta Metall Sin, 2007, 43(4): 439-443 .

Download:  PDF(770KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The phase stability and chemical stability of Cr3C2/Ni3Al composite at 1000℃ have been investigated through long-term aging and oxidation experiment. After long-term aging at 1000℃,chromium carbides kept stable, a few gamma phases separated out and strengthened the Ni3Al matrix, which resulted in the harness of Cr3C2/Ni3Al composite increase. On the other hand, Cr3C2/Ni3Al composite possessed good oxidation resistance. The protective oxides that mainly consisted of α-Al2O3 were formed and the chromium carbides exhibited good anti-oxidation stability and oxidation synergism with Ni3Al matrix. The analyse shows that the chromium carbides are dissolved during welding and some dissolved Cr enter into Ni3Al matrix. The existence of Cr promotesα-Al2O3 formation, which improves the oxidation resistance of the composite obviously. The oxidation rate of the Ni3Al alloy is two times greater than that of the composite in air. Good phase stability and chemical stability make Cr3C2/Ni3Al composite be suitable for long-term service at 1000℃.
Key words:  Ni3Al      chromium carbide      composite      stability at elevated temperature      
Received:  20 June 2006     
ZTFLH:  TB333  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I4/439

[1]Zhang D,Shan J G,Chen W Z,Ren J L.Acta Metall Sin, 2004;40:483 (张迪,单际国,陈武住,任家烈.金属学报,2004;40:483)
[2]La P Q,Xue Q J,Liu W M,Yang S R.Wear,2000;240:1
[3]Wang E Z,Xu Y P,Bao C G,Xing J D.Acta Mater Compos Sin,2004;21(1):56 (王恩泽,徐雁平,鲍崇高,邢建东.复合材料学报,2004;21(1): 56)
[4]Dogan(?)N,Hawk J A,Tylczak J H,Wilson R D,Gorier R D.Wear,1999;225-229:758
[5]Degnan C C,Shipway P H,Wood J V.Wear,2001;251: 1444
[6]Colaco R,Vilar R.Wear,2003;255:643
[7]Compilatory Group of Machine-Producing Technology and Material.Handbook of Machine-Producing Technol- ogy and Material(Second Part).Beijing:China Machine Press,1993:674 (机械制造工艺材料技术编写组.机械制造工艺材料技术手册(下册).北京:机械工业出版社,1993:674)
[8]Li S P,Fens D,Luo H L,Zhang X E,Cao X.J Iron Steel Res Int,2006;13(5):37
[9]Wu W Z.PhD Dissertation,Xi'an Jiaotong University, 1996 (武文忠.西安交通大学博士学位论文,1996)
[10]Xing J D,Gao Y M,Wang E Z,Bao C G.Tribology,2001; 21:340 (邢建东,高义民,王恩泽,鲍崇高.摩擦学学报,2001;21: 340)
[11]Hans B,Stefan K.Wear,1999;225-229:154
[12]Zhang Y G,Han Y F,Chen G L,Guo J T,Wan X J, Fang D.Structural Intermetallics.Beijing:National De- fence Industry Press,2001:313 (张永刚,韩雅芳,陈国良,郭建亭,万晓景,冯涤.金属间化合物结构材料.北京:国防工业出版社,2001:313)
[13]Giggins C S,Pettit F S.J Electrochem Soc,1971;118: 1782
[14]Perez P,Ruiz-Chica J,Garces G,Adeva P.Mater Sci Forum,2003;426-432:1909
[15]Klwer J,Brill U,Heubner U.Intermetallics,1999;7: 1183
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[3] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[5] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[6] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[7] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[8] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[9] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
[10] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[11] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[12] FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. 金属学报, 2022, 58(11): 1416-1426.
[13] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[14] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[15] LI Wenya, ZHANG Zhengmao, XU Yaxin, SONG Zhiguo, YIN Shuo. Research Progress of Cold Sprayed Ni and Ni-Based Composite Coatings: A Review[J]. 金属学报, 2022, 58(1): 1-16.
No Suggested Reading articles found!