Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (7): 689-693     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effects of Hydrogen on Shear Bands and Cracking in Zr Base Bulk Amorphous Alloy
SHAN Guangbin; WEI Bingchen;LI Jinxu; QIAO Lijie; CHU Wuyang
Laboratory of Environmental Fracture; Corrosion and Protection Center; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

SHAN Guangbin; WEI Bingchen; LI Jinxu; QIAO Lijie; CHU Wuyang. Effects of Hydrogen on Shear Bands and Cracking in Zr Base Bulk Amorphous Alloy. Acta Metall Sin, 2006, 42(7): 689-693 .

Download:  PDF(996KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of hydrogen on shear bands and cracking in bulk metallic glass of Zr65Al7.5Ni10Cu17.5 has been studied through in situ tensile and banding tests in SEM using a single-edge notched and smooth three-point samples. The results show that for either hydrogen-free or hydrogenated samples, shear crack will initiate and propagate along shear bands when shear bands grow a certain condition, and opening of shear crack under a tensile stress results in rapid fracture of samples. The characterless zone on the fracture is the shear band instead of fracture surface of shear crack. There is no essential difference between tensile and shear fracture surfaces. Hydrogen blistering will form after charging for a long time, if hydrogen blistering is very small or unformed, there is no evident effect of hydrogen on forming of shear bands and initiating of crack. If the hydrogen blistering is large, the shear crack will initiate at the early stage of growing shear band, resulting in brittle fracture under low stress.
Key words:  bulk metallic glass      hydrogen      shear bands      in situ tensile test      
Received:  08 October 2005     
ZTFLH:  TG111  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I7/689

[1] Vaidyanathan R,Dao M,Ravichandran G,Suresh S. Acta Mater, 2001; 49: 3781
[2] Flores K M,Dauskardt R H. Scr Mater, 1999, 41: 937
[3] Spaepen F. Acta Metall, 1977; 25: 407
[4] Inoue A, Zhang W, Zhang T, Kurosaka K. Acta Mater, 2001; 49: 2645
[5] Xing L Q, Li Y, Ramesh K T, Li J, Hufnagel T L.Phys Rev, 2001; 64B: 180201
[6] Wright W J, Schwarz R B, Nix W D. Mater Sci Eng, 2001;A319-321: 229
[7] Flores K M, Dauskardt R H. Acta Mater, 2001; 49: 2527
[8] Li J X, Chu W Y, Gao K W , Qiao L J. Acta Metall Sin,2003; 39: 359 (李金许,褚武扬,高克玮,乔利杰,金属学报,2003;39:359)
[9] Li J X, Shan G B, Gao KW,Qiao L J,Chu W Y. Mater Sci Eng, 2003; A354: 337
[10] Namboodhiri T K, Ramesh T A, Singh G,Seghal S. Mater Sci Eng, 1983; 61: 23
[11] Lin J J, Perng T P. Metall Mater Trans,1995; 26A: 197
[12] Suh D, Danskardt R H. Scr Mater, 2000; 42: 233
[13] Guo J X, Li J X, Qiao L J, Gao K W, Chu W Y. Corros Sci, 2003; 45: 735
[14] Eliaz N, Banks-Sills L,Ashkenazi D,Eliasi R. Acta Mater, 2004; 52: 93
[15] Shan G. B, Wang Y W,Chu W Y, Li J X, Hui X D. Corros Sci, 2005; 47: 2731
[16] Peng X, Su Y J,Gao K W,Qiao L J,Chu W Y.Mater Lett, 2004; 58: 2073
[17] Creager M, Paris P C. Int J Fract Mech,1967; 4: 247
[18] Wang Y W, Chu W Y, Li J X, Su Y J, Gao K W, Qiao L J. Mater Lett, 2004; 58: 2393
[1] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[2] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[3] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[4] XIAO Na, HUI Weijun, ZHANG Yongjian, ZHAO Xiaoli. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. 金属学报, 2021, 57(8): 977-988.
[5] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[6] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[7] LI Ning, HUANG Xin. Recent Advances on 3D Printed Bulk Metallic Glasses[J]. 金属学报, 2021, 57(4): 529-541.
[8] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[9] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[10] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[11] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[12] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[13] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[14] Yuping QIU, Hao DAI, Hongbin DAI, Ping WANG. Tuning Surface Composition of Ni-Pt/CeO2 Catalyst for Hydrogen Generation from Hydrous Hydrazine Decomposition[J]. 金属学报, 2018, 54(9): 1289-1296.
[15] Dan LI, Yang LI, Rongsheng CHEN, Hongwei NI. Direct Synthesis of NiCo2O4 Nanoneedles and MoS2 Nanoflakes Grown on 316L Stainless Steel Meshes by Two Step Hydrothermal Method for HER[J]. 金属学报, 2018, 54(8): 1179-1186.
No Suggested Reading articles found!