Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (2): 158-162     DOI:
Research Articles Current Issue | Archive | Adv Search |
Grain Growth Law of Semi-solid State TiCp/7075 Al Alloy Prepared by Spray Deposition
LIU Huimin
内蒙古工业大学材料科学与工程学院
Cite this article: 

LIU Huimin. Grain Growth Law of Semi-solid State TiCp/7075 Al Alloy Prepared by Spray Deposition. Acta Metall Sin, 2006, 42(2): 158-162 .

Download:  PDF(678KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The grain growth behavior in reactive spray formed TiCP/7075 Al alloy was studied and compared with that of spray formed 7075 Al alloy at semi-solid state. The specimens were heat-treated isothermally at 600℃ for times in the range of 10-60min,then quenched in water. The microstructure of reheated specimens was characterized using OP、SEM and TEM. The grain size was measured using a mean linear intercept method. Results shows that the in-situ TiC particles can effectively retard grain growth, grain growth exponent (n) for Arrhenius equation was increased from 2 to 3, which indicates that the in-situ TiC particles have the significant pinning effect on grain coarsening in the semi-solid state. The analysis also showed that the activation energy for grain growth for the samples with TiC addition was over twice of that for the samples without TiC additions, which made it more difficult for grain.
Key words:  semi-solid state      reheating      spray formed TiCP/7075 Al alloy      grain growth      
Received:  13 May 2005     
ZTFLH:  TG146.21  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I2/158

[1] Kang Z T, Zhang H, Chen Z H. Chin J Nonferrous Met,1998; 8: 595(康智涛,张豪,陈振华.中国有色金属学报,1998;8:595)
[2] Yu F X, Cui J H, Ranganathan S, Dwarakadasa E S. Mater Sci Eng, 2001; A304-306: 261
[3] Jung H K, Kang C G. J Mater Proc Technol, 2000; 104: 244
[4] Annavarapu S, Doherty R D. Acta Metall Mater, 1995; 43: 3207
[5] Lawrynowicz D E, Wolfenstine J, Lavernia E J. Mater Sci Eng, 1997; A230: 1
[6] Wang J L, Su Y H, Tsao C Y A. Scr Mater, 1997: 37: 2003
[7] MansonWhitton E D, Stone I C, Jones J R, Grant P S, Cantor B. Acta Mater, 2002; 50: 2517
[8] Yang B, Wang F, Huang Z J, Duan X J, Zhang J S. Mater Rev, 2001; 15(3): 4(杨滨,王锋,黄赞军,段先进,张济山.材料导报,2001;15(3):4)
[9] Wu G, Yao L J, Li Z X, Peng R Q, Zhao Z D. Aluminum and Aluminum Alloys Handbook. Beijin: Science Press, 1997: 255(武恭,姚良均,李震霞,彭如清,赵祖德.铝及铝合金材料手册.北京:科学出版社,1997:255)
[10] Lu G M, Dong J, Cui J Z. Chin J Nonferrous Met, 2001; 11: 211(路贵民,董杰,崔建忠.中国有色金属学报,2001;11:211)
[11] Lawrynowicz D E, Wolfenstine J, Lavernia E J. Mater Sci Eng, 1997; A230: 1
[12] Kawanishi S, Isonishi K, Okazaki K. Mater Trans, 1993; 34(1): 49C
[1] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[2] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[3] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
[4] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[5] Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. 金属学报, 2018, 54(11): 1525-1536.
[6] Yongjin WANG, Renbo SONG, Renfeng SONG. Deformation Behavior and Microstructure Evolution of 9Cr18 Alloy During Semi-Solid Compression[J]. 金属学报, 2018, 54(1): 39-46.
[7] Yajun HUI,Hui PAN,Wenyuan LI,Kun LIU,Bin CHEN,Yang CUI. Study on Heating Schedule of 1000 MPa Grade Nb-Ti Microalloyed Ultra-High Strength Steel[J]. 金属学报, 2017, 53(2): 129-139.
[8] Jianguo WANG,Dong LIU,Yanhui YANG. MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS[J]. 金属学报, 2016, 52(6): 707-716.
[9] ZHANG Hang, XU Qingyan, SHI Zhenxue, LIU Baicheng. NUMERICAL SIMULATION OF DENDRITE GRAIN GROWTH OF DD6 SUPERALLOY DURING DIRECTIONAL SOLIDIFICATION PROCESS[J]. 金属学报, 2014, 50(3): 345-354.
[10] ZHOU Deqiang, LIU Xiongjun, WU Yuan, WANG Hui, LV Zhaoping. RECRYSTALLIZATION BEHAVIOR AND ITS INFLU- ENCES ON MECHANICAL PROPERTIES OF AN ALUMINA-FORMING AUSTENITIC STAINLESS STEELS[J]. 金属学报, 2014, 50(10): 1217-1223.
[11] WU Yan, ZONG Yaping,ZHANG Xiangang. MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION[J]. 金属学报, 2013, 49(7): 789-796.
[12] ZHANG Zhuanzhuan WU Chuansong Gao Jinqiang. PREDICTION OF GRAIN GROWTH IN HYBRID WELDING HAZ OF TCS STAINLESS STEEL[J]. 金属学报, 2012, 48(2): 199-204.
[13] ZHOU Guangzhao WANG Yongxin CHEN Zheng. PHASE–FIELD METHOD SIMULATION OF THE EFFECT OF HARD PARTICLES WITH DIFFERENT SHAPES ON TWO–PHASE GRAIN GROWTH[J]. 金属学报, 2012, 48(2): 227-234.
[14] CHEN Weiye TONG Weiping ZHANG Hui ZHAO Xiang ZUO Liang. TEXTURE EVOLUTION AND GROWTH OF DIFFERENTLY SIZED GRAINS IN IF STEEL DURING ANNEALING[J]. 金属学报, 2010, 46(9): 1055-1060.
[15] FU Liming SHAN Aidang WANG Wei. EFFECT OF Nb SOLUTE DRAG AND NbC PRECIPITATE PINNING ON THE RECRYSTALLIZATION GRAIN GROWTH IN LOW CARBON Nb-MICROACLOYED STEEL[J]. 金属学报, 2010, 46(7): 832-837.
No Suggested Reading articles found!