Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (7): 721-726     DOI:
Research Articles Current Issue | Archive | Adv Search |
Near Threshold Fatigue Crack Growth Behavior in Stainless Steel
YU Huichen;ZHANG Yanji; SUN Yanguo; XIE Shishu; TANAKA Keisuke
Beijing Institute of Aeronautical Materials; Beijing 100095
Cite this article: 

YU Huichen; ZHANG Yanji; SUN Yanguo; XIE Shishu; TANAKA Keisuke. Near Threshold Fatigue Crack Growth Behavior in Stainless Steel. Acta Metall Sin, 2005, 41(7): 721-726 .

Download:  PDF(336KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Near threshold fatigue crack growth tests were conducted under torsion on circumferentially pre--cracked round bars of a stainless steel. The crack growth rate was decreased with crack extension because of the sliding contact of the crack faces. The crack growth rate without the influence of crack surface contact was determined by extrapolating the relationship between the crack growth rate and the crack extension to the zero crack length. The applied stress intensity factor range is divided into two parts: one is the effective value responsible for crack growth and the other is the shielding value dissolved by crack surfaces contact. The fatigue limits for crack initiation and fracture were predicted and the predicted values agreed well with the experimental results.
Key words:  fatigue crack growth      stress intensity factor      threshold      
Received:  04 November 2004     
ZTFLH:  TG111  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I7/721

[1] Pook L P. Int J Fatigue, 1985; 7(1): 21
[2] Yates J R, Miller K J. Fatigue Fract Eng Mater Struct, 1989; 12: 259
[3] Yoshioka S, Watanabe K, Kitagawa H, Inoue A, Kumar sawa M. Trans Jpn Sod Mech Eng, 1984; 50(453): 1267
[4] Tschegg E K. Mater Sci Eng, 1982; 54: 127
[5] Tschegg E K. J Mater Sci, 1983; 18: 1604
[6] Yu H C, Tanaka K, Akiniwa Y. Fatigue Fract Eng Mater Struct, 1998; 21: 1067
[7] Yu H C, Xie S S, Tanaka K, Akiniwa Y. J Mater Eng, 2002; (Suppl.): 317 (于慧臣,谢世殊,田中启介,秋庭义明.材料工程,2002;(增 刊):317)
[8] Yu H C, Xie S S, Sun Y G, Tanaka K. J Aeronaut Mater, 2004; 24(5): 53 (于慧臣,谢世殊,孙燕国,田中启介.航空材料学报, 2004; 24(5):53)
[9] Yu H C, Sun Y G, Xie S S, Tanaka K. Acta Metall Sin, 2005; 41: 73 (于慧臣,孙燕国,谢世殊,田中启介.金属学报, 2005;41: 73)
[10] Ritchie R O, McClintock F A, Hayeb-Hashemi H, Ritter M A. Metall Trans, 1982; 13A: 101
[11] Tada H, Paris P C, Irwin G R. The Stress Intensity Factor Handbook. 2nd ed., 1985: 27
[12] Tanaka K, Akiniwa Y, Nakamura H. Fatigue Fract Eng Mater Struct, 1996; 19: 571
[13] Tanaka K, Akiniwa Y, Yu H C. ASTM STP 1359, 1999: 295
[1] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[2] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[3] Chao XU, Qiliang NAI, Zhihao YAO, He JIANG, Jianxin DONG. Grain Boundary Oxidation Effect of GH4738 Superalloy on Fatigue Crack Growth[J]. 金属学报, 2017, 53(11): 1453-1460.
[4] Qiliang NAI,Jianxin DONG,Maicang ZHANG,Zhihao YAO. INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY[J]. 金属学报, 2016, 52(2): 151-160.
[5] Man YAO, Wei CUI, Xudong WANG, Haixuan XU, S R PHILLPOT. MOLECULAR DYNAMICS SIMULATION OF INITIAL RADIATION DAMAGE IN TUNGSTEN[J]. 金属学报, 2015, 51(6): 724-732.
[6] YANG Jian, DONG Jianxin, ZHANG Maicang. HIGH TEMPERATURE FATIGUE CRACK GROWTH BEHAVIOR OF A NOVEL POWDER METALLURGY SUPERALLOY FGH98[J]. 金属学报, 2013, 49(1): 71-80.
[7] LI Wei CHEN Zhenhua CHEN Ding TENG Jie. GROWTH BEHAVIOR OF FATIGUE CRACK IN SPRAY-FORMED SiCp/Al-7Si COMPOSITE[J]. 金属学报, 2011, 47(1): 102-108.
[8] XIONG Ying CHEN Bingbing ZHENG Sanlong GAO Zengliang. STUDY ON FATIGUE CRACK GROWTH BEHAVIOR OF 16MnR STEEL UNDER DIFFERENT CONDITIONS[J]. 金属学报, 2009, 45(7): 849-855.
[9] ZHU Mingliang XUAN Fuzhen ZHU Kuilong WANG Guozhen JIA Tianyao. EFFECT OF HEAT TREATMENT ON FATIGUE BEHAVIOR OF 25Cr2NiMo1V STEEL[J]. 金属学报, 2009, 45(3): 320-325.
[10] LU Liantao LI Wei ZHANG Jiwang SHIOZAWA Kazuaki ZHANG Weihua. ANALYSIS OF ROTARY BENDING GIGACYCLE FATIGUE PROPERTIES OF BEARING STEEL GCr15[J]. 金属学报, 2009, 45(1): 73-78.
[11] . The turning point in Paris region of fatigue crack growth in titanium alloy[J]. 金属学报, 2008, 44(8): 973-978 .
[12] WANG Li-Min SUN Ming-Yuan. Electronical measurement of incision iron specimens’ fracture proceeding and calculation of the structure bearing capacity[J]. 金属学报, 2008, 44(7): 853-858 .
[13] XIONG Ying. A TWO-PARAMETER DRIVING FORCE FOR FATIGUE CRACK GROWTH[J]. 金属学报, 2008, 44(11): 1348-1353 .
[14] CHU Wuyang; LU Rongbang;QIAO Lijie; WANG Yanbin (Department of Materials Physics; University of Science & Technology Beijing; Beijing 100083)CHENG Yihuan; CHEN Hongxing(Baoshan Iron and Steel Corporation; Shanghai 201900);GUAN Yongsheng; YAN Yinglong; SUN Wei(Tianjin Steel Pipe Corporation; Tianjin 300310)Correspondent:CHU Wuyang; professor Tel: (010)62332906; Fax: (010)62327283;E-mail: ljqiao@public.bta.net.cn. THE THRESHOLD STRESS FOR HYDSOGEN-INDUCED CRACKING OF C90 TUBULAR STEELS[J]. 金属学报, 1998, 34(10): 1077-1083.
[15] CHEN Wenzhe;ZHANG Sa;QIAN Kuangwu (Department of Materials; Fuzhou University; Fuzhou 350002)GU Haicheng (Institute of Materials; Xi'an Jiaotong University; Xi'an 710049)WANG Zhongguang (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). FATIGUE CRACK GROWTH RATES AND FATIGUE THRESHOLDS OF CENTRIFUGAL SPRAY DEPOSITED Ti-48Al-2Mn-2Nb[J]. 金属学报, 1998, 34(1): 70-74.
No Suggested Reading articles found!