Evolution of Microstructure of Full Lamellar Titanium Alloy BT18Y Solutionized At Phase Field
YANG Yi; XU Feng; HUANG Aijun; LI Geping
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang110016
Cite this article:
YANG Yi; XU Feng; HUANG Aijun; LI Geping. Evolution of Microstructure of Full Lamellar Titanium Alloy BT18Y Solutionized At Phase Field. Acta Metall Sin, 2005, 41(7): 713-720 .
Abstract BT18Y titanium alloy was treated with several groups of heat treatment.
After solutionized frectment at phase field,
metalloscopy, transmission electron Microscope (TEM)
and scanning electron microscopy (SEM) were employed to observe
the microstructures. It was found that the continuous grain boundary
(GB) phase is spheroidizes and the edges of some intragranular
primarylaths show “forked” morphology. The ultimate
reason of the spheroidization of GB is the diffusion of solute
atoms due to the difference of solute concentration, which results from
the different interfacial
curvatures at different sites.
The joint of two GB
lamellas also gives some contribution to the spheroidization of GB .
The “forked” morphology at the edge of primary lath
results from different interfacial structures and energies between
phase and different parts oflath. The incoherent interface
between phase and the edge of lath has
high interfacial energy and moves easily. When the alloy is solutionized at
phase field, phase trends to grow into
lath and forms lath, which results the “forked”
morphology of primary lath.
[1]Lee D H,Nam S W.Scr Mater,1999;40:265 [2]Bolisowa E A.Translated by Chen S Q.Metallography of Titanium Alloys.Beijing:Defense Industrial Press,1980: 246,214,227,199 (鲍利索娃E.A.编著,陈石卿译.钛合金金相学.北京:国防 工业出版社,1986:246,214,227,199) [3] Wang Q Y,Ge Z M,Zhou Y B.Aerial Titanium Alloy. Shanghai:Shanghai Science and Technology Press,1985: 209,211,302 (王全友,葛志明,周彦邦.航空用钛合金.上海:上海科学技 术出版社, 1985:210,190,302) [4]Filip R,Kubiak K,Ziaja W,Sieniawski J.Mater Proc Technol,2003;133:84 [5]Peng C Q,Huang B Y,He Y H.Chin Nonferrous Met, 2001;11:527 (彭超群,黄伯云,贺跃辉.中国有色金属学报,2001;11:527) [6] Tiley J,Searles T,Lee E,Kar S,Banerjee R,Russ J C, Fraser H L.Mater Sci Eng,2004;A372:191 [7] Lee D H, Nam S W, Choe S J. Mater Sci Eng, 2000; A291: 60 [8] Semiatin S L, Seetharaman V, Ghosh A K, Shell E B, Simon M P, Fagin P N. Mater Sci Eng, 1998; A256: 92 [9] Seshacharyulu T, Medeiros S C, Morgan J T, Malas J C, Frazier W G, Prasad Y V R K. Mater Sci Eng, 2000; A279: 289 [10] Seshacharyulu T, Medeiros S C, Frazier W G, Prasad Y V R K. Mater Sci Eng, 2002; A325: 112 [11] Sauer C, Lutjering G.Mater Sci Eng, 2001; A319-321: 393 [12] Lutjering G. Mater Sci. Eng, 1999; A263: 117 [13] Zhang X D, Bonniwell P, Fraser H L, Baeslack W A, Evans D J, Ginter T, Bayha T, Cornell B. Mater Sci Eng, 2003; A343: 210 [14] Koike J, Maruyama K. Mater Sci Eng, 1999; A263: 155 [15] Furuhara T, Ogawa T, Maki T. Philos Mag Lett, 1995; 72 (3): 175 [16] Bhattacharyya D, Viswanathan G B, Robb D, Furrer D, Hamish L F. Acta Mater, 2003; 51: 4679 [17] Huang A J, Xu F, Li G P, Li D. Acta Metall Sin, 2002; 38(Suppl.): S217 (黄爱军,徐锋,李阁平,李 东.金属学报, 2002;3s(增 刊):S217) [18] Furuhara T, Takagi S, Watanabe H, Maki T. Metall Trans, 1996; 27A: 1635 [19] Miyano N, Fujiwara H, Ameyama K, Weatherly G C. Mater Sci Eng, 2002; A333: 85 [20] Cui Z Q. Metallography and Heat Treatment. Beijing: China Machine Press, 1995: 257 (崔忠圻.金属学与热处理.北京:机械工业出版社,1995:257) [21] Xia L F. Metallic Heat Treatment Technology. Herbin: Harbin University of Technology Press, 1998: 28 (夏立芳.金属热处理工艺学.哈尔滨:哈尔滨工业大学出版社, 1998:28) [22] Xu Z Y. The Theory of Phase Transition. Beijing: Science Press, 2000: 22 (徐祖耀.相变原理.北京:科学出版社, 2000:22) [23] Huang A J, Li G P, Hao Y L,Yang R. Ada Mater, 2003; 51: 4939 [24] Viswanathan G B, Karthikeyan S, Hayes R W, Mills M J. Acta Mater, 2002; 50: 4965 [25] Savage M F, Tatalovich J, Zupan M, Hemker K J, Mills M J. Mater Sci Eng, 2001; A319-321: 398 [26] Seward G G E, Celotto S, Prior D J, Wheeler J, Pond R G. Acta Mater, 2004; 52: 821H