Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (4): 407-410     DOI:
Research Articles Current Issue | Archive | Adv Search |
Microstructures Of Rapidly Solidified Cu--Fe Immiscible Alloy
HE Jie; ZHAO Jiuzhou
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

HE Jie; ZHAO Jiuzhou. Microstructures Of Rapidly Solidified Cu--Fe Immiscible Alloy. Acta Metall Sin, 2005, 41(4): 407-410 .

Download:  PDF(289KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Fine powders of the Cu-Fe alloy were manufactured by using the high-pressure gas atomization technique. The study of the powder microstructures indicated that the size and concentration of the atomized-droplets play important roles in the microstructure evolution. A smaller atomized-droplet has a finer dispersed microstructure. Alloys with composition close to the critical composition of the alloy system are relatively easy to be undercooled into the miscibility gap. The formation of Fe--poor layer on the surface of powder is mainly caused by two reasons. One is the Fe-rich droplets' Marangoni migration towards the center of the atomized-droplet due to the radial temperature gradient, and the other is the repulsive effect of the advancing solid-liquid interface on the Fe-rich droplets.
Key words:  Cu--Fe alloy      metastable miscibility gap      
Received:  02 June 2004     
ZTFLH:  TG146  
  TG244  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I4/407

[1]Spitzig W A. Acta Metall Mater, 1991; 39: 1085
[2]Li J F. Shanghai Met (Nonferrous Fasc), 1990; 11: 18 (李济富.上海金属,19901 11:18)
[3]Zhou W P, Lu D M. Rare Met Mater Eng, 1993; 22: 24 (周武平,昌大铭.稀有金属材料与工程, 1993;22:41)
[4]Saxena S S, Tang J, Lee Y-S, O'Connor C J. J Appl Phys, 1994; 76: 6820
[5]Elder S P, Munitz A, Abbaschian G J. Mater Sci Forum, 1989; 50: 137
[6]Wilde G, Perepezko H J. Acta Mater, 1999; 47: 3009
[7]Biselli C, Morris D G. Acta Mater, 1996; 44: 493
[8]Nakagawa Y. Acta Metall, 1958; 6: 704
[9]Swartzendruber L J. In: Massalski T B, ed., Binary Alloy Phase Diagrams (2nd). New York: ASM, 1990: 1409
[10]Chuang Y-Y, Schmid R, Chang Y A. Metall Trans, 1984; 15A: 1921
[11]Chen Q, Jin Z P. Metall Mater Trans, 1995; 26A: 417
[12]Wilde G, Willnecker R, Singh R N, Sommer F. Z Metallkd, 1997; 88: 804
[13]Washizu T, Nagasaka T, Hino M. Z Metallkd, 2002; 93: 281
[14]Zhao J Z, Ratke L. Scr Mater, 2004; 50: 543
[15]Marangoni C. Ann Phys Chem, 1871; 143: 337
[16]Zubko A M, Lobanov V G, Nikonova V V. Sov Phys Crys- tallog, 1973; 18: 239
[17]Surappa M K, Rohatgi P K. J Mater Sci, 1981; 16: 765
[18]Pottlacher G. J Non-Cryst Solids, 1999; 251: 177
[19]Ye V, Zinovyev V F, Polev S G, Taluts G. Phys Met Metall, 1986; 61: 85
[20]Zinovev V E, Taluts S G, Kamashev M G, Vlasov B V, Polyakova V P. Phys Met Metall, 1994; 77: 492
[1] . Microstructure and Mechanical Properties of As-cast and Laser Powder Bed Fused AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. 金属学报, 0, (): 0-0.
[2] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[3] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] . The solidification microstructure and wear properties of undercooled Cu-Co/Cu-Co-Fe alloys under a high magnetic field[J]. 金属学报, 0, (): 0-0.
[5] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] . Effects of Overlapping Process on Grain Orientation and Microstructure of  Nickel-Based Single Crystal Superalloy DD491Fabricated by Selective Laser Melting[J]. 金属学报, 0, (): 0-0.
[7] . Hot Deformation Behavior of Ti30Ni50Hf20 High Temperature Shape Memory Alloy[J]. 金属学报, 0, (): 0-0.
[8] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[10] DUAN Huichao, WANG Chunyang, YE Hengqiang, DU Kui. Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces[J]. 金属学报, 2023, 59(10): 1291-1298.
[11] . Simulation of Core-Shell Structures Evolution of Cu-Co Immiscible Alloys[J]. 金属学报, 0, (): 0-0.
[12] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[13] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[14] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[15] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
No Suggested Reading articles found!