Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (5): 489-493     DOI:
Research Articles Current Issue | Archive | Adv Search |
Microstructural Evolution During Superplastic Deformation in Large-Grained Single Phase Ni-48Al Intermetallics
HU Jing;LIN Dongliang
Open Laboratory of Education Ministry of China for High Temperature Materials and TestsSchool of Materials Science and Engineering;;Shanghai Jiaotong University; Shanghai 200030;Department of Materials Science and Engineering; Jiangsu Polytechnic University; Changzhou 213016
Cite this article: 

HU Jing; LIN Dongliang. Microstructural Evolution During Superplastic Deformation in Large-Grained Single Phase Ni-48Al Intermetallics. Acta Metall Sin, 2004, 40(5): 489-493 .

Download:  PDF(6945KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Superplastic deformation has been found in large-grained Ni-48Al intermetallics with grain size of 200 μm. Metallographic examination shows that the average grain size of the tested material decreases during superplastic deformation and much finer grains could be obtained after superplastic deformation. TEM and EBSD show that there are great numbers of subgrain boundaries and the proportion of subgrain and low angle boundaries increases with the increase of strain. During superplastic deformation an unstable subgrain network forms, which absorbs gliding and climbing dislocations and transforms into low and high angle grain boundaries accommodated by subgrain boundary sliding, migration and rotation. The observed superplastic phenomenon was explained by continuously dynamic recovery and recrystallization.
Key words:  Ni-48Al      intermetallics      large-grained      
Received:  16 April 2003     
ZTFLH:  TG146  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I5/489

[1] Lin D L, Shah A D, Li D Q. Scr Metall Mater, 1994; 31: 1455
[2] Li D Q, Shah A D, Liu Y, Lin D L. Scr Metall Mater, 1995; 33:681
[3] Lin D L, Shan A D, Chen M W. Intermetallics, 1996; 4: 489
[4] Lin D L, Li D Q, Liu Y. Intermetallics, 1998; 6:243
[5] Lin D L, Liu Y. Mater Sci Eng, 1999; A268:83
[6] Lin D L, Liu Y. Mater Sci Eng, 2002; A329:863
[7] Gu Y F, Lin D L, Shan A D, Chen J G, Hu F, Cao H Q. Acta Metall Sin, 1998; 34:351(谷月峰,林栋梁,单爱党,陈家光,胡凡,曹涵清.金属学报,1998;34:351)
[8] Sun F, Lin D L. Scr Mater, 2001; 44:665
[9] Du X H, Guo J T, Zhou B D. Scr Mater, 2001; 45:69
[10] Jiang D, Lin D L. Mater Sci Lett, 2002; 21:505
[11] Jiang D, Lin D L. Mater Lett, 2002; 57:747
[12] Kim W-Y, Hanada S, Sakai T. Mater Sci Eng, 1998; A248:78
[13] Kogachi M, Hataguchi T. Mater Sci Eng, 2001; A312:189
[14] Liu Z Y, Lin D L, Chen D. Trans Nonferrous Met Soc Chin, 1997; 7:128
[1] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
[2] Lin GENG, Hao WU, Xiping CUI, Guohua FAN. Recent Progress on the Fabrication of TiAl-Based Composites Sheet by Reaction Annealingof Elemental Foils[J]. 金属学报, 2018, 54(11): 1625-1636.
[3] Xuan YU, Zhihao ZHANG, Jianxin XIE. Microstructure, Ordered Structure and Warm TensileDuctility of Fe-6.5%Si Alloy with Various Ce Content[J]. 金属学报, 2017, 53(8): 927-936.
[4] Li ZHOU,Chao CUI,Qing JIA,Yingshi MA. Experimental and Finite Element Simulation of Milling Process for γ-TiAl Intermetallics[J]. 金属学报, 2017, 53(4): 505-512.
[5] Jihou LIU,Hongyun ZHAO,Zhuolin LI,Xiaoguo SONG,Hongjie DONG,Yixuan ZHAO,Jicai FENG. Microstructures and Mechanical Properties of Cu/Sn/Cu Structure Ultrasonic-TLP Joint[J]. 金属学报, 2017, 53(2): 227-232.
[6] Guotian WANG, Hongsheng DING, Ruirun CHEN, Jingjie GUO, Hengzhi FU. Effect of Current Intensity on Microstructure of Ni3Al Intermetallics Prepared by Directional Solidification Electromagnetic Cold Crucible Technique[J]. 金属学报, 2017, 53(11): 1461-1468.
[7] Tong LIU,Liangshun LUO,Yanning ZHANG,Yanqing SU,Jingjie GUO,Hengzhi FU. MICROSTRUCTURE EVOLUTION AND GROWTH BEHAVIORS OF FACETED PHASE IN DIRECTIONALLYSOLIDIFIED Al-Y ALLOYS II. Microstructure Evolution of Directionally Solidified Al-53%Y Peritectic Alloy[J]. 金属学报, 2016, 52(7): 866-874.
[8] PENG Yingbo, CHEN Feng, WANG Minzhi, SU Xiang, CHEN Guang. RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti-45Al-8Nb ALLOY[J]. 金属学报, 2013, 49(11): 1457-1461.
[9] ZHOU Minbo LI Xunping MA Xiao ZHANG Xinping. EARLY INTERFACIAL REACTION AND UNDERCOOLING SOLIDIFICATION BEHAVIOR  OF Sn-3.5Ag/Cu SYSTEM[J]. 金属学报, 2010, 46(5): 569-574.
[10] LIANG Yongchun GUO Jianting; SHENG Liyuan; ZHOU Lanzhang. EFFECTS OF RARE EARTH ELEMENT Gd ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF NiAl-Cr(Mo)-Hf EUTECTIC ALLOY[J]. 金属学报, 2010, 46(5): 528-532.
[11] ZHOU Dianwu XU Shaohua ZHANG Fuquan PENG Ping LIU Jinshui. FIRST-PRINCIPLES CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF AB2 TYPE INTERMETALLICS IN ZA62 MAGNESIUM ALLOY[J]. 金属学报, 2010, 46(1): 97-103.
[12] HE Hongwen XU Guangchen GUO Fu. FORMATION OF WHISKER AND HILLOCK IN Cu/Sn--58Bi/Cu SOLDERED JOINT DURING ELECTROMIGRATION[J]. 金属学报, 2009, 45(6): 744-748.
[13] HU Jing LIN Dongliang WANG Yan. EBSD ANALYSES OF THE MICROSTRUCTURAL EVOLUTION AND CSL CHARACTERISTIC GRAIN BOUNDARY OF COARSE--GRAINED NiAl ALLOY DURING PLASTIC DEFORMATION[J]. 金属学报, 2009, 45(6): 652-656.
[14] ;. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A CAST NiAl-Cr(Mo)-Ti EUTECTIC ALLOY[J]. 金属学报, 2006, 42(10): 1031-1035 .
[15] GUO Jianting; ZHANG Guangye; ZHOU Jian. Microstructure and Superplastic Deformation Behavior of NiAl-15Cr Alloy[J]. 金属学报, 2004, 40(5): 494-498 .
No Suggested Reading articles found!