Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (8): 1130-1140    DOI: 10.11900/0412.1961.2024.00115
Research paper Current Issue | Archive | Adv Search |
Neutron Pair Distribution Function Analysis to the Local Structure of High-Entropy RE2SiO5 Environmental Barrier Coating
WANG Haoyu1, LÜ Xirui1, CHEN Qi1,2, XIONG Ying3, LUO Zhixin1, ZHANG Jie1(), WANG Jingyang1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230000, China
3 AECC Shenyang Liming AERO-ENGINE Science and Technology Co. Ltd., Shenyang 110043, China
Cite this article: 

WANG Haoyu, LÜ Xirui, CHEN Qi, XIONG Ying, LUO Zhixin, ZHANG Jie, WANG Jingyang. Neutron Pair Distribution Function Analysis to the Local Structure of High-Entropy RE2SiO5 Environmental Barrier Coating. Acta Metall Sin, 2024, 60(8): 1130-1140.

Download:  HTML  PDF(2562KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Environmental barrier coatings (EBCs) enable SiCf/SiC ceramic matrix composites (CMC) to operate under high-temperature combustion conditions. They reduce the oxidation rate of SiCf/SiC, the volatilization of the composites due to reaction with water vapor, and the surface temperature of the composites. Rare-earth monosilicates (RE2SiO5), owing to their excellent high-temperature durability, low thermal conductivity, and good phase stability, are used as the top layer of EBCs. However, they exhibit a high coefficient of thermal expansion (CTE), leading to thermal mismatch and inducing tensile residual stress (with a magnitude of several hundred MPa) in the coating, resulting in the formation of vertical cracks, which act as extremely-high-diffusivity paths for oxidation species transportation and silica volatilization. Therefore, regulating the CTE of RE2SiO5 EBCs and minimizing the CTE mismatch among constituent RE2SiO5 layers with SiCf/SiC CMCs are critical for multilayered EBCs. Through atmospheric plasma spraying, a typical Yb2SiO5/Yb2Si2O7/Si coating system and a tri-layer structured multicomponent (Y1/4Ho1/4Er1/4Yb1/4)2SiO5/Yb2Si2O7/Si coating system with better matched CTEs were manufactured. Both the coatings remained adhered to the substrate during deposition and after annealing, and no mud cracks that would compromise the coating gas-tightness quality and delamination cracks were observed at any of the coating interfaces. In thermal cycling tests, (Y1/4Ho1/4Er1/4Yb1/4)2SiO5/Yb2Si2O7/Si coatings showed a lifetime that is three times longer than that of conventional Yb2SiO5/Yb2Si2O7/Si coatings. The failure mechanisms in thermal cycling were investigated via the finite element simulation of stress. It was found that the stress in the substrate was low, and the residual thermal stress was mainly concentrated on the top, inter, and bond layers and increased with an increase in temperature. Compared with that of the (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 top coat, the Yb2SiO5 top coat showed obviously higher residual tensile stress, which contributed to a higher tendency for mud-crack formation and higher energy release rate, substantially reducing the coating's thermal cycling lifetime. Through neutron powder diffraction and pair distribution function (PDF) analysis, the average and local structures of RE2SiO5 were studied. Overall, the average and local structures did not differ significantly, both of which can be described using the C2/c structure. Nevertheless, the PDF results demonstrated some differences in the disorder degree of Si—O and RE—O coordination environments. In particular, Rietveld refinement results of the PDF showed lower local distortion degree of [ORE4] tetrahedrons when compared with that of the average structure. It is effective to reduce the distortion degree of [ORE4] tetrahedrons by introducing Y3+, Ho3+, and Er3+ into the Yb3+ sites of Yb2SiO5, and smaller distortion degrees lead to lower CTE values. Coordinative local disturbances introduced by strategic high-entropy design have been proposed as the key method for CTE regulation.

Key words:  neutron diffraction      pair distribution function      rare-earth silicate      environmental barrier coating      burner rig test     
Received:  23 April 2024     
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China(U21A2063);National Natural Science Foundation of China(52372071);National Natural Science Foundation of China(52302076);National Natural Science Foundation of China(92360304)
Corresponding Authors:  ZHANG Jie, professor, Tel: (024)23970490, E-mail: jiezhang@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00115     OR     https://www.ams.org.cn/EN/Y2024/V60/I8/1130

Coating

Current

A

Ar flow rate

L·min-1

H2 flow rate

L·min-1

Distance

mm

Si50042890
Yb2Si2O74504012120
Yb2SiO55504012120
(Y1/4Ho1/4Er1/4Yb1/4)2SiO55504012120
Table 1  Plasma spray parameters for deposition of RE2SiO5 top layer, Yb2Si2O7 intermediate layer, and Si bond layer
Fig.1  Cross-sectional SEM image and finite element mesh model of tri-layer structured environmental barrier coating (EBC)
LayerMaterialYoung's modulus / GPaCTE / (106 K-1)Ref.
SubstrateSiC4304.02[25]
Bond layerSi82*4.10[23]
Inter layerYb2Si2O772-85*4.66[22,26]
Yb2SiO570-80*6.5-7.32[27]
Top layerYb2O390.85*6.07-8.03[28]
(4RE1/4)2SiO572.5-85*5.49-6.59[10]
Table 2  Young's moduli and coefficients of thermal expansion (CTE) of EBC system components[10,22,23,25-29]
Fig.2  XRD spectra of (Y1/4Ho1/4Er1/4Yb1/4)2SiO5/Yb2-Si2O7/Si (a) and Yb2SiO5/Yb2Si2O7/Si (b) coatings after annealing
CoatingPhase composition (mass fraction / %)Refinement factor / %
RE2SiO5RE2O3R-weighted pattern (Rwp)R-pattern (Rp)
(Y1/4Ho1/4Er1/4Yb1/4)2SiO576.323.74.943.65
Yb2SiO573.326.77.915.79
Table 3  Phase fractions in annealed (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 and Yb2SiO5 topcoats and corresponding Rietveld refinements factors
Fig.3  Cross-section SEM images of (Y1/4Ho1/4Er1/4Yb1/4)2SiO5/Yb2Si2O7/Si (a, c, e, f) and Yb2SiO5/Yb2Si2O7/Si (b, d, g, h) coatings after annealing (a, b) and thermal cycling for 300 cyc (c, e, f) and 83 cyc (d, g, h) (White arrows in Fig.2c indicate the locations of vertical cracks in top layer)
Fig.4  Residual thermal stresses in different layers whiling cooling from different temperatures to room temperature of (Y1/4Ho1/4Er1/4Yb1/4)2SiO5/Yb2Si2O7/Si and Yb2SiO5/Yb2Si2O7/Si coatings (Insets in Figs.4b and c show the enlarged details of residual thermal stress in inter layer and bond layer in the range of 1700 K to 1900 K)
(a) top layer (b) inter layer (c) bond layer (d) substrate
Fig.5  Schematics of crystal structure of rare-earth monosilicate RE2SiO5 projected along the c axis (a) and b axis (b), and structure of [SiO4] and [ORE4] tetrahedrons (c)
Fig.6  Time-of-flight neutron powder diffraction (TOF-NPD) Rietveld refinement patterns of (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 (a) and Yb2SiO5 (b)
Data sourceMaterialλσ2
[SiO4][ORE4][SiO4][ORE4]
TheoreticalYb2SiO51.000081.0014314.8653249.768
Average structure from TOFYb2SiO51.001341.0015614.21285.91
(Y1/4Ho1/4Er1/4Yb1/4)2SiO51.000061.0026022.99263.72
Local structure from PDFYb2SiO51.002741.0039158.25250.10
(Y1/4Ho1/4Er1/4Yb1/4)2SiO51.002131.0009975.00204.32
Table 4  Bond length distortion (λ) and bond angle variance (σ2) of Yb2SiO5 and (Y1/4Ho1/4Er1/4Yb1/4)2SiO5
Fig.7  Fit of RE2SiO5 PDF with structures obtained from the TOF-NPD Rietveld refinements (G(r) is defined as atomic pair distribution funtion, r—distance between atoms in the system)
Fig.8  PDF Rietveld refinement patterns of (Y1/4Ho1/4Er1/4-Yb1/4)2SiO5 (a) and Yb2SiO5 (b), and corresponding derived partial PDFs
Fig.9  PDF patterns (a) and Rietveld refinement patterns in the range of 0.15-0.5 nm (b) of Yb2SiO5 and (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 (Insets in Fig.8a show the structure of [SiO4] and [ORE4] tetrahedrons and bond length of Si—O and RE—O)
1 More K L, Tortorelli P F, Walker L R, et al. High-temperature stability of SiC-based composites in high-water-vapor-pressure environments [J]. J. Am. Ceram. Soc., 2003, 86: 1272
2 Zhang J, Liu R J, Jian Y J, et al. Degradation mechanism of SiCf/SiC composites after long-time water vapor and oxygen corrosion at 1300oC [J]. Corros. Sci., 2022, 197: 110099.
3 Tian Z L, Zhang J, Zheng L Y, et al. General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium-magnesium-aluminosilicate at 1300oC [J]. Corros. Sci., 2019, 148: 281
4 Sun L C, Ren X M, Du T F, et al. High entropy engineering: New strategy for the critical property optimizations of rare earth silicates [J]. J. Inorg. Mater., 2021, 36: 339
doi: 10.15541/jim20200611
孙鲁超, 任孝旻, 杜铁峰 等. 高熵化设计: 稀土硅酸盐材料关键性能优化新策略 [J]. 无机材料学报, 2021, 36: 339
doi: 10.15541/jim20200611
5 Lee K N. Current status of environmental barrier coatings for Si-based ceramics [J]. Surf. Coat. Technol., 2000, 133: 1
6 Luo Y X, Sun L C, Wang J M, et al. Tunable thermal properties in yttrium silicates switched by anharmonicity of low-frequency phonons [J]. J. Eur. Ceram. Soc., 2018, 38: 2043
7 Richards B T, Begley M R, Wadley H N G. Mechanisms of ytterbium monosilicate/mullite/silicon coating failure during thermal cycling in water vapor [J]. J. Am. Ceram. Soc., 2015, 98: 4066
8 Tian Z L, Zheng L Y, Hu W P, et al. Tunable properties of (Ho x Y1 - x )2SiO5 as damage self-monitoring environmental/thermal barrier coating candidates [J]. Sci. Rep., 2019, 9: 415
9 Cao G, Ouyang J H, Li Y, et al. Improved thermophysical properties of rare-earth monosilicates applied as environmental barrier coatings by adjusting structural distortion with RE-doping [J]. J. Eur. Ceram. Soc., 2021, 41: 7222
10 Ren X M, Tian Z L, Zhang J, et al. Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: A perspective multifunctional thermal and environmental barrier coating material [J]. Scr. Mater., 2019, 168: 47
11 Li Y R, Wang J M, Wang J Y. Theoretical investigation of phonon contributions to thermal expansion coefficients for rare earth monosilicates RE2SiO5 (RE = Dy, Ho, Er, Tm, Yb and Lu) [J]. J. Eur. Ceram. Soc., 2020, 40: 2658
12 Luo Y X, Sun L C, Wang J M, et al. Material-genome perspective towards tunable thermal expansion of rare-earth di-silicates [J]. J. Eur. Ceram. Soc., 2018, 38: 3547
13 Hou D, Zhao C H, Paterson A R, et al. Local structures of perovskite dielectrics and ferroelectrics via pair distribution function analyses [J]. J. Eur. Ceram. Soc., 2018, 38: 971
14 Wei Z N. Design of lattice oxygen activity and local structural for lithium-rich layered oxide cathode material [D]. Xuzhou: China University of Mining and Technology, 2022
魏志宁. 富锂层状氧化物正极材料晶格氧活性及局域结构的设计 [D]. 徐州: 中国矿业大学, 2022
15 Ou M Y. Studies on the structure-properties relationship of disordered electrode materials by pair distribution function technique [D]. Wuhan: Huazhong University of Science and Technology, 2021
欧明洋. 原子对分布函数技术对无序电极材料构效关系的研究 [D]. 武汉: 华中科技大学, 2021
16 Xu Y, Ou M Y, Liu Y, et al. Crystallization-induced ultrafast naion diffusion in nickel hexacyanoferrate for high-performance sodium-ion batteries [J]. Nano Energy, 2020, 67: 104250
17 Li Z F, Chen Y C, Jian Z L, et al. Defective hard carbon anode for Na-ion batteries [J]. Chem. Mater., 2018, 30: 4536
18 Zhang N, Yokota H, Glazer A M, et al. The missing boundary in the phase diagram of PbZr1 - x Ti x O3 [J]. Nat. Commun., 2014, 5: 5231
doi: 10.1038/ncomms6231 pmid: 25342592
19 Datta K, Richter A, Göbbels M, et al. Direct mapping of microscopic polarization in ferroelectric x(BiScO3)-(1 - x)(PbTiO3) throu-ghout its morphotropic phase boundary [J]. Phys. Rev., 2016, 93B: 064102.
20 Mangelis P, Koch R J, Lei H, et al. Correlated disorder-to-order crossover in the local structure of K x Fe2 - y Se2 - z S z [J]. Phys. Rev., 2019, 100B: 094108
21 Campi G, Ricci A, Bianconi A. Local structure in Mg1 - x Al x B2 system by high resolution neutron diffraction [J]. J. Supercond. Nov. Magn., 2012, 25: 1319
22 Tian Z L, Zheng L Y, Wang J M, et al. Damage tolerance and extensive plastic deformation of β-Yb2Si2O7 from room to high temperatures [J]. J. Am. Ceram. Soc., 2015, 98: 2843
23 Richards B T, Sehr S, de Franqueville F, et al. Fracture mechanisms of ytterbium monosilicate environmental barrier coatings during cyclic thermal exposure [J]. Acta Mater., 2016, 103: 448
24 Wu S. Preparation and performance optimization of plasma sprayed Gd2O3-Yb2O3-YSZ composite thermal barrier coatings [D]. Shanghai: Shanghai Maritime University, 2022
吴 硕. 等离子喷涂Gd2O3-Yb2O3-YSZ复合热障涂层的制备及性能优化研究 [D]. 上海: 上海海事大学, 2022
25 Lee K N, Fox D S, Bansal N P. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics [J]. J. Eur. Ceram. Soc., 2005, 25: 1705
26 Zhou Y C, Zhao C, Wang F, et al. Theoretical prediction and experimental investigation on the thermal and mechanical properties of bulk β-Yb2Si2O7 [J]. J. Am. Ceram. Soc., 2013, 96: 3891
27 Tian Z L, Zheng L Y, Wang J M, et al. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications [J]. J. Eur. Ceram. Soc., 2016, 36: 189
28 Zhang G H, Zhang J, Wang J Y. Synthesis and characterization of ytterbium oxide: A novel CMAS-resistant environmental barrier coating material [J]. J. Am. Ceram. Soc., 2023, 106: 621
29 Toby B H, von Dreele R B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package [J]. J. Appl. Cryst., 2013, 46: 544
30 Richards B T, Zhao H B, Wadley H N G. Structure, composition, and defect control during plasma spray deposition of ytterbium silicate coatings [J]. J. Mater. Sci., 2015, 50: 7939
31 Li Y R. First-principles investigations about thermal properties of novel ceramics with low thermal conductivity [D]. Beijing: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Sciences), 2018
李亦然. 几种新型低热导率陶瓷热学性能的第一性原理研究 [D]. 北京: 中国科学院大学 (中国科学院金属研究所), 2018
32 Robinson K, Gibbs G V, Ribbe P H. Quadratic elongation: A quantitative measure of distortion in coordination polyhedra [J]. Science, 1971, 172: 567
pmid: 17802221
33 Zhu H, Huang Y L, Ren J C, et al. Bridging structural inhomogeneity to functionality: Pair distribution function methods for functional materials development [J]. Adv. Sci., 2021, 8: 2003534
34 Qiu X, Božin E S, Juhas P, et al. Reciprocal-space instrumental effects on the real-space neutron atomic pair distribution function [J]. J. Appl. Cryst., 2004, 37: 110
35 Lu Y H, Cao Y J, Zhao X. Optimal rare-earth disilicates as top coat in multilayer environmental barrier coatings [J]. J. Alloys Compd., 2018, 769: 1026
36 Wang Y W, Niu Y R, Zhong X, et al. Water vapor corrosion behaviors of plasma sprayed RE2SiO5 (RE = Gd, Y, Er) coatings [J]. Corros. Sci., 2020, 167: 108529
37 Jiang F R, Cheng L F, Wei H J, et al. Hot corrosion behavior of Lu2SiO5 and La2SiO5 in a molten Na2SO4 environment: A first-principles corrosion resistance investigation [J]. Ceram. Int., 2019, 45: 15532
[1] ZHOU Mu, WANG Qian, WANG Yanxu, ZHAI Zirong, HE Lunhua, LI Bing, MA Yingjie, LEI Jiafeng, YANG Rui. Effect of Prewelding Pretreatment on Welding Residual Stress of Titanium Alloy Thick Plate[J]. 金属学报, 2024, 60(8): 1064-1078.
[2] ZHU Guijie, WANG Siqing, ZHA Min, LI Meijuan, SUN Kai, CHEN Dongfeng. Effect of Rare Earth Element Ce on the Bulk Texture and Mechanical Anisotropy of As-Extruded Mg-0.3Al- 0.2Ca-0.5Mn Alloy Sheets[J]. 金属学报, 2024, 60(8): 1079-1090.
[3] LI Biao, ZHANG Long, YAN Tingyi, FU Huameng, YUAN Xudong, WEN Mingyue, ZHANG Hongwei, LI Hong, ZHANG Haifeng. Effects of Heat Treatment Processes and W Wire Properties on Residual Stress in W Wire Reinforced Zr-Based Metallic Glass Composites[J]. 金属学报, 2024, 60(8): 1055-1063.
[4] LIN Hao, LI Jian, YANG Zhaolong, ZHONG Shengyi. Recent Progress in Stress Analysis Technology and Application of Neutron Diffraction[J]. 金属学报, 2024, 60(8): 1017-1030.
[5] GU Liming, FENG Xiaoming, YU Zhao, ZHANG Junfan, LIU Zhenyu, HE Lunhua, LU Huaile, LI Xiaohu, WANG Chen, ZHANG Xiaodong, XIAO Bolv, MA Zongyi. Impact of Cryogenic Cycling on the Macro and Microscopic Residual Stress in SiC/Al Composites[J]. 金属学报, 2024, 60(8): 1031-1042.
[6] YANG Junjie, ZHANG Changsheng, LI Hongjia, XIE Lei, WANG Hong, SUN Guang'ai. Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys[J]. 金属学报, 2024, 60(1): 30-42.
[7] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[8] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[9] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[10] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[11] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[12] BI Zhongnan,QIN Hailong,DONG Zhiguo,WANG Xiangping,WANG Ming,LIU Yongquan,DU Jinhui,ZHANG Ji. Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings[J]. 金属学报, 2019, 55(9): 1160-1174.
[13] Hailong QIN,Ruiyao ZHANG,Zhongnan BI,Lee Tung Lik,Hongbiao DONG,Jinhui DU,Ji ZHANG. Study on the Evolution of Residual Stress During Ageing Treatment in a GH4169 Alloy Disk[J]. 金属学报, 2019, 55(8): 997-1007.
[14] Zukun YANG, Changsheng ZHANG, Beibei PANG, Yanyan HONG, Fangjie MO, Zhao LIU, Guang'ai SUN. Effect of Initial Microstructures on the Macroscopic Mechanical Properties of Polycrystalline Beryllium[J]. 金属学报, 2018, 54(8): 1150-1156.
[15] Jianglei ZHU, Qing WANG, Haipeng WANG. Thermophysical Properties and Atomic Distribution of Undercooled Liquid Cu[J]. 金属学报, 2017, 53(8): 1018-1024.
No Suggested Reading articles found!