Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (6): 857-865    DOI: 10.11900/0412.1961.2023.00158
Research paper Current Issue | Archive | Adv Search |
Hot Deformation Behavior of Ti30Ni50Hf20 High-Temperature Shape Memory Alloy
JIANG Muchi1,2, GONG Jishuang3, YANG Xingyuan2, REN Dechun2(), CAI Yusheng2, LI Bingyang4,5, JI Haibin2(), LEI Jiafeng1,2
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shi -changxu Advanced Materials Innovation Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510275, China
4 Advanced Materials and Energy Center, China Academy of Aerospace Science and Innovation, Beijing 100163, China
5 College of Engineering, Peking University, Beijing 100871, China
Cite this article: 

JIANG Muchi, GONG Jishuang, YANG Xingyuan, REN Dechun, CAI Yusheng, LI Bingyang, JI Haibin, LEI Jiafeng. Hot Deformation Behavior of Ti30Ni50Hf20 High-Temperature Shape Memory Alloy. Acta Metall Sin, 2025, 61(6): 857-865.

Download:  HTML  PDF(2561KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The application of Ti-Ni binary alloy at high temperatures is hindered by its low phase transition temperature. To enhance this transition temperature, researchers have explored the addition of metal Hf to Ti-Ni alloy. However, Ti-Ni-Hf high-temperature shape memory alloy exhibits brittleness and lacks favorable thermal deformation characteristics. Thus, a comprehensive investigation of its thermal deformation behavior is essential. During the hot working process, the material undergoes shape and microstructural changes, which are influenced by various processing factors. Consequently, optimizing processing parameters, including temperature, strain, and strain rate, is crucial for producing defect-free components with the desired microstructure. To optimize the hot working technology, single-pass compression tests on a Gleeble-3800 thermo-simulation machine were conducted and the hot deformation behavior and workability of the high-temperature shape memory alloy Ti30Ni50Hf20 were explored. These tests covered a temperature range of 700-900 oC and a strain rate range of 0.01-10 s-1. Flow stress-strain curves for Ti30Ni50Hf20 under different deformation conditions were generated and the evolution of the alloy's microstructure at varying deformation temperatures under a strain rate of 0.01 s-1, as well as at a deformation temperature of 900 oC with different deformation rates were examined. Utilizing a dynamic material model, a processing diagram was constructed and the impact of process parameters on the alloy's processing performance was analyzed. The results indicate that the recrystallization of Ti30Ni50Hf20 high-temperature shape memory alloy increases with the deformation temperature. This alloy exhibits negative temperature sensitivity and positive strain sensitivity, with flow stress increasing as the strain rate rises and decreasing with higher deformation temperatures. A constitutive equation for Ti30Ni50Hf20 high-temperature shape memory alloy during hot working is established, employing the Arrhenius hot deformation equation. The calculated strain activation energy was determined to be 527.447 kJ/mol. It revealed a consistent match between the theoretical and actual peak stress values. Through the assessment of the hot working diagram, the optimal processing parameters are identified as a deformation temperature in the range of 880-900 oC and a strain rate of 0.01-0.04 s-1.

Key words:  high-temperature shape memory alloy      hot deformation behavior      constitutive equation      thermal processing map     
Received:  10 April 2023     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(52205431)
Corresponding Authors:  REN Dechun, associate professer, Tel: (024)83970131, E-mail: dcren14s@imr.ac.cn;
JI Haibin, professor, Tel: (024)83970131, E-mail: hbji@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00158     OR     https://www.ams.org.cn/EN/Y2025/V61/I6/857

Fig.1  OM image (a) and DSC curve (b) for as-cast Ti30Ni50Hf20 high-temperature shape memory alloy, and DSC curve for as-cast Ti50Ni50 shape memory alloy (c)
Fig.2  Stress-strain curves of Ti30Ni50Hf20 high-temperature shape memory alloy at different temperatures and strain rates (ε˙)
(a) 700 oC (b) 800 oC (c) 900 oC
Fig.3  Variation curves of peak stress (σp) of Ti30Ni50Hf20 high-temperature shape memory alloy with temperature and ε˙
Fig.4  Stress-strain curves of Ti30Ni50Hf20 high-temperature shape memory alloy under different deformation temperatures at strain rates of 0.01 s-1 (a), 0.1 s-1 (b), 1 s-1 (c), and 10 s-1 (d)
Fig.5  Relationships between σp and ε˙ of Ti30Ni50Hf20 high-temperature shape memory alloy
(a) σp-lnε˙ (b) lnσp-lnε˙
(c) ln[sinh(ασp)]-lnε˙ (α—stress level parameter)
Fig.6  Relationship between ln[sinh(ασp)] and 1000 / T of Ti30Ni50Hf20 high-temperature shape memory alloy
Fig.7  Relationship between lnZ and ln[sinh(ασp)] of Ti30Ni50Hf20 high-temperature shape memory alloy (Z—Zener-Hollmon parameter)
Fig.8  Comparisons of measured and calculated peak stresses of Ti30Ni50Hf20 high-temperature shape memory alloy
Fig.9  OM images for Ti30Ni50Hf20 high-temperature shape memory alloy at strain rate of 0.01 s-1 at deformation temperatures of 700 oC (a), 800 oC (b), and 900 oC (c)
Fig.10  OM images for Ti30Ni50Hf20 high-temperature shape memory alloy at deformation temperature of 900 oC under strain rates of 0.1 s-1 (a), 1 s-1 (b), and 10 s-1 (c) (Inset in Fig.10b shows the slip band)
Fig.11  Power dissipation diagram of Ti30Ni50Hf20 high-temperature shape memory alloy
Fig.12  Thermal processing diagram of Ti30Ni50Hf20 high-temperature shape memory alloy
1 Singh S, Karthick S, Palani I A. Design and development of Cu-Al-Ni shape memory alloy coated optical fiber sensor for temperature sensing applications [J]. Vacuum, 2021, 191: 110369
2 Chen F, Qiu P C, Liu Y, et al. Microstructure and mechanical properties of NiTi shape memory alloys by in situ laser directed energy deposition [J]. Acta Metall. Sin., 2023, 59: 180
doi: 10.11900/0412.1961.2022.00425
陈 斐, 邱鹏程, 刘 洋 等. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能 [J]. 金属学报, 2023, 59: 180
3 Es-Souni M, Fischer-Brandies H. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications [J]. Anal. Bioanal. Chem., 2005, 381: 557
pmid: 15660223
4 Abbas A, Hung H Y, Lin P C, et al. Atomic layer deposited TiO2 films on an Equiatomic NiTi shape memory alloy for biomedical applications [J]. J. Alloys Compd., 2021, 886: 161282
5 Ren D C, Zhang H B, Li S J, et al. Properties of Ti-Ni pre-alloyed powder used for electron beam melting [J]. Rare Met. Mater. Eng., 2020, 49: 3218
任德春, 张慧博, 李述军 等. 电子束增材制造技术用Ti-Ni预合金粉末性能研究 [J]. 稀有金属材料与工程, 2020, 49: 3218
6 Feng Z W, Cui Y, Shang Z Y, et al. Development of NiTiZr high temperature shape memory alloys [J]. Mater. Rep., 2016, 30(suppl.2) : 616
冯昭伟, 崔 跃, 尚再艳 等. 镍钛锆高温形状记忆合金的研究进展 [J]. 材料导报, 2016, 30(): 616
7 Li Q Q, Li Y, Ma Y H. Research progress of titanium-based high-temperature shape memory alloy [J]. Mater. Rep., 2020, 34: 148
李启泉, 李 岩, 马悦辉. 钛基高温形状记忆合金进展综述 [J]. 材料导报, 2020, 34: 148
8 Canadinc D, Trehern W, Ma J, et al. Ultra-high temperature multi-component shape memory alloys [J]. Scr. Mater., 2019, 158: 83
9 Yi X Y, Meng X L, Cai W, et al. Research progress in Ti-Ni-Hf high temperature shape memory alloys [J]. J. Mater. Eng., 2021, 49(3): 31
衣晓洋, 孟祥龙, 蔡 伟 等. Ti-Ni-Hf高温形状记忆合金的研究进展 [J]. 材料工程, 2021, 49(3): 31
doi: 10.11868/j.issn.1001-4381.2020.000531
10 Zuo S G, Jin X J, Jin M J. Research progress in high temperature shape memory alloys [J]. Mater. Mech. Eng., 2014, 38(1): 1
左舜贵, 金学军, 金明江. 高温形状记忆合金的研究进展 [J]. 机械工程材料, 2014, 38(1): 1
11 Meng X K, Zhao C W. Research progress on Ti-Ni-Hf high temperature shape memory alloy [J]. Mater. Rep., 2013, 27(3): 99
孟晓凯, 赵春旺. 钛镍铪高温形状记忆合金的研究进展 [J]. 材料导报, 2013, 27(3): 99
12 Liao B, Cao L F, Wu X D, et al. Hot deformation behavior and processing map of 7A55 aluminum alloy in double thermo-mechanical treatment process [J]. Nonferrous Met. Eng., 2021, 11(2): 1
廖 斌, 曹玲飞, 吴晓东 等. 双级形变热处理工艺中7A55铝合金热变形行为及热加工图 [J]. 有色金属工程, 2021, 11(2): 1
13 Ma X, Xu S Y, Zhou G, et al. Thermal deformation behavior of Ni60Ti40 shape memory alloy [J]. China Metall., 2022, 32(9): 26
马 昕, 许斯洋, 周 舸 等. Ni60Ti40形状记忆合金的热变形行为 [J]. 中国冶金, 2022, 32(9): 26
14 Zhu L Z, Lu S Q, Shu X Y, et al. Hot deformation behavior and constitutive relationships of Ni-40Ti shape memory alloy [J]. Spec. Cast. Nonferrous Alloys, 2016, 36: 425
朱乐宗, 鲁世强, 舒小勇 等. Ni-40Ti形状记忆合金热变形行为及本构关系的建立 [J]. 特种铸造及有色合金, 2016, 36: 425
15 Zhao Y N, Jiang S Y, Zhang Y Q, et al. Hot deformation behavior and processing map of NiTi shape memory alloy [J]. Appl. Sci. Technol., 2017, 44(1): 76
赵亚楠, 江树勇, 张艳秋 等. NiTi形状记忆合金的热变形行为及热加工图 [J]. 应用科技, 2017, 44(1): 76
16 Karelin R, Komarov V, Cherkasov V, et al. Production, mechanical and functional properties of long-length TiNiHf rods with high-temperature shape memory effect [J]. Materials, 2023, 16: 615
17 Tugrul H O, Akgul O, Kockar B. Creep behavior of 50at%Ni 25at%Ti 25at%Hf high temperature shape memory alloy under constant load [J]. Mater. Today Commun., 2022, 33: 104827
18 Meng X L, Cai W, Zheng Y F, et al. Phase transformation and precipitation in aged Ti-Ni-Hf high-temperature shape memory alloys [J]. Mater. Sci. Eng., 2006, A438-440: 666
19 Chen S H, Wang Q Y, Jiang H C, et al. Effect of δ-ferrite on hot deformation and recrystallization of 316KD austenitic stainless steel for sodium-cooled fast reactor application [J]. Acta Metall. Sin., 2024, 60: 367
陈胜虎, 王琪玉, 姜海昌 等. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响 [J]. 金属学报, 2024, 60: 367
doi: 10.11900/0412.1961.2022.00039
20 Li F L, Fu R, Bai Y R, et al. Effects of initial grain size and strengthening phase on thermal deformation and recrystallization behavior of GH4096 superalloy [J]. Acta Metall. Sin., 2023, 59: 855
doi: 10.11900/0412.1961.2021.00532
李福林, 付 锐, 白云瑞 等. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响 [J]. 金属学报, 2023, 59: 855
doi: 10.11900/0412.1961.2021.00532
21 Luo L S, Wang F X, Wu X M, et al. Hot deformation and processing maps of low cost Ti-Al-V-Fe-O alloy [J]. Rare Met. Mater. Eng., 2018, 47: 2049
骆良顺, 王富鑫, 吴晓明 等. 低成本Ti-Al-V-Fe-O合金热变形行为及热加工图 [J]. 稀有金属材料与工程, 2018, 47: 2049
22 Liu Q Q, Lu Y, Zhang Y F, et al. Thermal deformation behavior of Al19.3Co15Cr15Ni50.7 high entropy alloy [J]. Acta Metall. Sin., 2021, 57: 1299
刘庆琦, 卢 晔, 张翼飞 等. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为 [J]. 金属学报, 2021, 57: 1299
doi: 10.11900/0412.1961.2020.00349
23 Bai X H, Zhao X C, Zhao D L, et al. Research on thermal deformation behavior of a high carbon Cr5 roll steel [J]. MW Met. Form., 2021, (12): 68
白兴红, 赵席春, 赵德利 等. 一种高碳Cr5轧辊钢的热变形行为研究 [J]. 金属加工热加工, 2021, (12): 68
24 Hua S M, Zhang P Z, Liu Z L, et al. Hot deformation behavior and hot working map of Cu-0.58Sn alloy [J]. Nonferrous Met. Eng., 2021, 11(10): 40
花思明, 张平则, 刘子利 等. Cu-0.58Sn合金热变形行为和热加工图 [J]. 有色金属工程, 2021, 11(10): 40
25 Tian L, Ji H B, Lei J F, et al. Study on constitutive relationship for hot deformation of Ti6242s Alloy [J]. Hot Work. Technol., 2013, 42(20): 97
田 录, 吉海宾, 雷家峰 等. Ti6242s合金本构关系的研究 [J]. 热加工工艺, 2013, 42(20): 97
26 Huang Y L, Wang J B, Ling X S, et al. Research development of hot processing map theory [J]. Mater. Rep., 2008, 22(suppl.3): 173
黄有林, 王建波, 凌学士 等. 热加工图理论的研究进展 [J]. 材料导报, 2008, 22(): 173
27 Semiatin S L, Seetharaman V, Weiss I. Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure [J]. Mater. Sci. Eng., 1999, A263: 257
28 Bobbili R, Madhu V. Hot deformation behavior and processing maps of Ti-15Al-12Nb alloy [J]. Rare Met., 2022, 41: 2316
29 Lv B J, Peng J, Wang Y J, et al. Dynamic recrystallization behavior and hot workability of Mg-2.0Zn-0.3Zr-0.9Y alloy by using hot compression test [J]. Mater. Des., 2014, 53: 357
30 Wei L L, Pan Q L, Zhou J, et al. Processing maps and flow instability analysis of Al-Zn-Mg-Cu-Zr alloy [J]. J. Cent. South Univ. (Sci. Technol.), 2013, 44: 1798
韦莉莉, 潘清林, 周 坚 等. Al-Zn-Mg-Cu-Zr合金加工图的构建及失稳分析 [J]. 中南大学学报(自然科学版), 2013, 44: 1798
31 Lei W G, Han D, Zhang Y Q, et al. Hot deformation mechanism and processing map of TC4-DT titanium alloy [J]. Titanium Ind. Prog., 2015, 32(1): 20
雷文光, 韩 栋, 张永强 等. TC4-DT钛合金热变形机制及加工图 [J]. 钛工业进展, 2015, 32(1): 20
[1] BAO Chengli, LI Hao, HU Li, ZHOU Tao, TANG Ming, HE Qubo, LIU Xiangguo. Construction of Hot Processing Map of Solutionized Mg-10Gd-6Y-1.5Zn-0.5Zr Alloy and Microstructure Evolution[J]. 金属学报, 2025, 61(4): 632-642.
[2] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[3] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[4] ZHAO Manman, QIN Sen, FENG Jie, DAI Yongjuan, GUO Dong. Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel[J]. 金属学报, 2020, 56(7): 960-968.
[5] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[6] Bolü XIAO, Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA. Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites[J]. 金属学报, 2019, 55(1): 59-72.
[7] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[8] Xiaoyun YUAN, Liqing CHEN. HOT DEFORMATION AT ELEVATED TEMPERATURE AND RECRYSTALLIZATION BEHAVIOR OF A HIGH MANGANESE AUSTENITIC TWIP STEEL[J]. 金属学报, 2015, 51(6): 651-658.
[9] LI Junru, GONG Chen, CHEN Lie, ZUO Hui, LIU Yazheng. HOT DEFORMATION BEHAVIOR OF BLADES STEEL 10Cr12Ni3Mo2VN FOR ULTRA- SUPERCRITICAL UNITS[J]. 金属学报, 2014, 50(9): 1063-1070.
[10] FU Mingjie, HAN Xiuquan, WU Wei, ZHANG Jianwei. SUPERPLASTICITY RESEARCH OF Ti-23Al-17Nb ALLOY SHEET[J]. 金属学报, 2014, 50(8): 955-961.
[11] YU Hui KIM Youngmin YU Huashun YOU Bongsun MIN Guanghui. HOT DEFMATION BEHAVIOR AND HOT WORKABILITY OF Mg-Zn-Zr-Ce ALLOY[J]. 金属学报, 2012, 48(9): 1123-1131.
[12] ZHANG Huibo JIN Wei YANG Rui. 3D FINITE ELEMENT SIMULATION OF PULL–OUT FORCE OF TiNiFe SHAPE MEMORY PIPE COUPLING WITH INNER CONVEX[J]. 金属学报, 2012, 48(12): 1520-1524.
[13] CAO Yu DI Hongshuang ZHANG Jiecen ZHANG Jingqi MA Tianjun. RESEARCH ON DYNAMIC RECRYSTALLIZATION BEHAVIOR OF INCOLOY 800H[J]. 金属学报, 2012, 48(10): 1175-1185.
[14] SUN Chaoyang LIU Jinrong LI Rui ZHANG Qingdong. CONSTITUTIVE MODELING FOR ELEVATED TEMPERATURE FLOW BEHAVIOR OF INCOLOY 800H SUPERALLOY[J]. 金属学报, 2011, 47(2): 191-196.
[15] SHEN Kun WANG Mingpu GUO Mingxing LI Shumei . STUDY ON HIGH TEMPERATURE DEFORMATION CHARACTERISTICS OF Cu–0.23%Al2O3 DISPERSION–STRENGTHENED COPPER ALLOY[J]. 金属学报, 2009, 45(5): 597-604.
No Suggested Reading articles found!