Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (3): 365-374    DOI: 10.11900/0412.1961.2021.00011
Research paper Current Issue | Archive | Adv Search |
Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel
LIU Jie1, XU Le1(), SHI Chao2, YANG Shaopeng1,3, HE Xiaofei1, WANG Maoqiu1, SHI Jie1
1.Institute of Special Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2.Inner Monglia North Heavy Industries Group Corp. Ltd. , Baotou 014033, China
3.The Technology Center of Ma'anshan Iron and Steel Co. Ltd. , Ma'anshan 243000, China
Cite this article: 

LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel. Acta Metall Sin, 2022, 58(3): 365-374.

Download:  HTML  PDF(3786KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A rare-earth Ce microalloyed non-quenching and tempering steel was designed. The morphology, quantity, and size of inclusions in non-quenched and tempered steel with different Ce contents were characterized by SEM, EDS, and ASPEX, as well as the metallography of the test steels. The formation process of Ce sulfide inclusion was analyzed by Thermo-Calc thermodynamic software, and the element distribution at grain boundary and phase interface was characterized by 3DAP. The results showed that Ce combined with S to form Ce3S4 inclusion which then transformed into Ce2S3 inclusion, and finally formed the composite inclusion with Ce2S3 as the core and Ti4C2S2 and MnS as the cladding growth. The aspect ratio of more than 90% inclusions in the steel test with Ce element is less than 2.5; the microstructure of the steel was the smallest with an average grain size of 4.17 μm when the Ce content was 0.019% (mass fraction). The results of 3DAP prove that Ce segregates at the grain boundary and phase boundary, which hinder the diffusion of C and inhibit the growth of grain. In addition, the finely dispersed Ce inclusions as nucleation particles also refine the microstructure of the non-quenched and tempered steel.

Key words:  rare earth Ce      non-quenched and tempered steel      inclusion      grain refinement     
Received:  06 January 2021     
ZTFLH:  TG142  
Fund: National Key Research and Development Program of China(2016YFB0300103)
About author:  XU Le, professor, Tel: 18911259273, E-mail: xule@nercast.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00011     OR     https://www.ams.org.cn/EN/Y2022/V58/I3/365

SteelCSiMnPAltSVTiCeFe
R00.370.481.350.00600.0050.059< 0.0050.063-Bal.
R10.380.461.360.0042< 0.0050.051< 0.0050.0590.010Bal.
R20.380.431.400.0050< 0.0050.063< 0.0050.0590.019Bal.
R30.380.471.390.0045< 0.0050.064< 0.0050.0580.027Bal.
Table 1  Chemical compositions of the test steels
Fig.1  Compositions of inclusions in steel
Fig.2  EDS mappings of composite inclusions in steel
Fig.3  OM images of microstructures of inclusions
Fig.4  Distributions of inclusions in steel
Fig.5  Numbers and sizes of inclusions in steel
Fig.6  Aspect ratios of inclusions in steel
Fig.7  Inclusion accumulation diagram in test steel containing 0.027%Ce (R3)
Fig.8  OM images of microstructures of the test steels
Fig.9  Ferrite contents of the test steels
Fig.10  Uniaxial balance property diagram of R1 steel
Fig.11  The generation process diagram of cerium-based composite inclusions
SteelAc1 / oCAc3 / oC
R0715803
R1705780
R2675795
R3710785
Table 2  Phase transition points of the test steel
Fig.12  Element distributions at grain boundary and phase interface
Fig.13  Element distribution of Ce and S at grain boundary and phase interface
Fig.14  Intra-granular ferrite (IGF) around the composite inclusion
1 Stuart H. The properties and processing of microalloyed HSLA steels [J]. JOM, 1991, 43(1): 35
2 Paules J R. Developments in HSLA steel products [J]. JOM, 1991, 43(1): 41
3 Lu J L, Cheng G G, Tan B, et al. Effect of Zr, Al addition on characteristics of MnS and formation of intragranular ferrite in non-quenched and tempered steel [J]. ISIJ Int., 2018, 58: 921
4 Lu J L, Cheng G G, Chen L, et al. Distribution and morphology of MnS inclusions in resulfurized non-quenched and tempered steel with Zr addition [J]. ISIJ Int., 2018, 58: 1307
5 Chen H X, Zhou P, Chen A J, et al. Development of free cutting steel for automobile [J]. Chin. Metall., 2001, (3): 32
陈洪星, 周 平, 陈爱洁等. 汽车用易切削钢的开发 [J]. 中国冶金, 2001, (3): 32
6 Li M L. Study on formation behavior and homogenization control of sulfide inclusions in free-cutting non-quenched and tempered steel [D]. Beijing: University of Science and Technology Beijing, 2015
李梦龙. 易切削非调质钢中硫化物生成行为与均匀化控制研究 [D]. 北京: 北京科技大学, 2015
7 Sun H, Wu L P, Xie J B, et al. Inclusions modification and improvement of machinability in a non-quenched and tempered steel with Mg treatment [J]. Metall. Res. Technol., 2020, 117: 208
8 Lin S G, Yang H H, Su Y H, et al. CALPHAD-assisted morphology control of manganese sulfide inclusions in free-cutting steels [J]. J. Alloys Compd., 2019, 779: 844
9 Shen P, Fu J X. Morphology study on inclusion modifications using Mg-Ca treatment in resulfurized special steel [J]. Materials, 2019, 12: 197
10 Ma Q Q, Wu C C, Cheng G G, et al. Characteristic and formation mechanism of inclusions in 2205 duplex stainless steel containing rare earth elements [J]. Mater. Today: Proc., 2015, 2(suppl.2): S300
11 Zhang Q S, Min Y, Xu J J, et al. Formation and evolution behavior of inclusions in Al-killed resulfurized free-cutting steel with magnesium treatment [J]. J. Iron Steel Res. Int., 2020, 27: 631
12 Dong H Y, Hu L J, Liang W Y, et al. Effect of rare earth element Ce on corrosion resistance of 316L stainless steel [J]. Corros. Sci. Prot. Technol., 2018, 30: 489
董海英, 胡丽娟, 梁婉怡等. 稀土Ce对316L不锈钢耐腐蚀性能的影响 [J]. 腐蚀科学与防护技术, 2018, 30: 489
13 Wang L M, Lin Q, Ji J W, et al. New study concerning development of application of rare earth metals in steels [J]. J. Alloys Compd., 2006, 408-412: 384
14 Huang Y, Cheng G G, Xie Y. Modification mechanism of cerium on the inclusions in drill steel [J]. Acta Metall. Sin., 2018, 54: 1253
黄 宇, 成国光, 谢 有. 稀土Ce对钎具钢中夹杂物的改质机理研究 [J]. 金属学报, 2018, 54: 1253
15 Huang Y, Cheng G G, Li S J, et al. Precipitation mechanism and thermal stability of primary carbide in Ce microalloyed H13 steel [J]. Acta Metall. Sin., 2019, 55: 1487
黄 宇, 成国光, 李世健等. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究 [J]. 金属学报, 2019, 55: 1487
16 Torkamani H, Raygan S, Garcia Mateo C, et al. Contributions of rare earth element (La, Ce) addition to the impact toughness of low carbon cast niobium microalloyed steels [J]. Met. Mater. Int., 2018, 24: 773
17 Adabavazeh Z, Hwang W S, Su Y H. Effect of adding cerium on microstructure and morphology of Ce-based inclusions formed in low-carbon steel [J]. Sci. Rep., 2017, 7: 46503
18 Torkamani H, Raygan S, Mateo C G, et al. The Influence of La and Ce addition on inclusion modification in cast niobium micro-alloyed steels [J]. Metals, 2017, 7: 377
19 Liu D L, Wang Y L, Huo X D, et al. Crain refinement and strengthening of low garbon steel by CSP technology [J]. Acta Metall. Sin., 2002, 38: 647
柳得橹, 王元立, 霍向东等. CSP低碳钢的晶粒细化与强韧化 [J]. 金属学报, 2002, 38: 647
20 Aranda M M, Kim B, Rementeria R, et al. Effect of prior austenite grain size on pearlite transformation in a hypoeuctectoid Fe-C-Mn steel [J]. Metall. Mater. Trans., 2014, 45A: 1778
21 Zhao H T, Palmiere E J. Effect of austenite grain size on acicular ferrite transformation in a HSLA steel [J]. Mater. Charact., 2018, 145: 479
22 Liang Y L, Yi Y L, Long S L, et al. Effect of rare earth elements on isothermal transformation kinetics in Si-Mn-Mo bainite steels [J]. J. Mater. Eng. Perform., 2014, 23: 4251
23 Jiang Z H, Wang P, Li D Z, et al. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels [J]. J. Mater. Sci. Technol., 2020, 45: 1
24 Bhattacharya A, Mondal K, Upadhyay C S, et al. A phase-field investigation of the effect of grain-boundary diffusion on austenite to ferrite transformation [J]. Comput. Mater. Sci., 2020, 173: 109428
25 Wang L M, Lin Q, Yue L J, et al. Study of application of rare earth elements in advanced low alloy steels [J]. J. Alloys Compd., 2008, 451: 534
26 Suito H, Ohta H, Morioka S. Refinement of solidification microstructure and austenite grain by fine inclusion particles [J]. ISIJ Int., 2006, 46: 840
[1] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[4] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[5] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[6] ZHU Miaoyong, DENG Zhiyin. Evolution and Control of Non-Metallic Inclusions in Steel During Secondary Refining Process[J]. 金属学报, 2022, 58(1): 28-44.
[7] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[8] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[9] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[10] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[11] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[12] ZHANG Xinfang, YAN Longge. Regulating the Non-Metallic Inclusions by Pulsed Electric Current in Molten Metal[J]. 金属学报, 2020, 56(3): 257-277.
[13] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[14] ZHANG Jun,JIE Ziqi,HUANG Taiwen,YANG Wenchao,LIU Lin,FU Hengzhi. Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys[J]. 金属学报, 2019, 55(9): 1145-1159.
[15] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
No Suggested Reading articles found!