Please wait a minute...
Acta Metall Sin  2013, Vol. 29 Issue (4): 385-390    DOI: 10.3724/SP.J.1037.2012.00694
Current Issue | Archive | Adv Search |
INVESTIGATION ON EFFECTS OF ALLOYING ON OXIDATION RESISTANCE OFγ-TiAl BY USING  FIRST PRINCIPLE
PING Faping, HU Qingmiao, YANG Ru
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang
Download:  PDF(2549KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation energies of Al2O3 and TiO2 containing different transition metal alloying elements were calculated by using a first-principles plane-wave pseudoptential method, the effect of alloying on the relative stabilities of Al2O3 and TiO2 was also analyzed. The results showed that almost all the alloying elements increased the oxidation energies of Al2O3 and TiO2, i.e., destabilized both Al2O3 and TiO2. Comparing the oxidation energies of Al2O3 and TiO2, it was foud that, W, Mo, Re, Nb, etc., decreased significantly the stabilities of Al2O3 relative to that of TiO2, indicating that these alloying elements may hamper efficiently the inner oxidation of Al in the γ-TiAl matrix so as to increase the high-temperature oxidation resistance of γ-TiAl.

Key words:  first principle      γ-TiAl, alloying      oxidation energy      relative stability      internal oxidation     
Received:  21 November 2012     

Cite this article: 

PING Faping, HU Qingmiao, YANG Ru. INVESTIGATION ON EFFECTS OF ALLOYING ON OXIDATION RESISTANCE OFγ-TiAl BY USING  FIRST PRINCIPLE. Acta Metall Sin, 2013, 29(4): 385-390.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00694     OR     https://www.ams.org.cn/EN/Y2013/V29/I4/385

[1] Clemens H, Kestler H.  Adv Eng Mater, 2000; 2: 551


[2] Kim Y W.  JOM, 1989; 41: 24

[3] Subramanian P R, Mendiratta M G, Dimiduk D M, Stucke M A.  Mater Sci Eng, 1997; A239-240: 1

[4] Becker S, Rahmel A, Schorr M, Schutze M.  Oxid Met, 1992; 38: 425

[5] Brady M, Brindley W, Smialek J, Locci I.  JOM, 1996; 48: 46

[6] Niewolak L, Shemet V, Gil A, Singheiser L, Quadakkers J W.  Adv Eng Mater, 2001; 3: 496

[7] Haanappel V A C, Sunderkotter J D, Stroosnijder M F.  Intermetallics, 1999; 7: 529

[8] Nickel H, Zheng N X, Elschner A, Quadakkers W J.  Mikrochim Acta, 1995; 119: 23

[9] Perkins R A, Chiang K T, Meier G H.  Scr Metall, 1987; 21: 1505

[10] Shida Y, Anada H.  Mater Trans JIM, 1994; 35: 623

[11] Shida Y, Anada H.  Oxid Met, 1996; 45: 197

[12] Shida Y, Anada H.  Corros Sci, 1993; 35: 945

[13] Wang F H, Tang Z L, Wu W T.  Oxid Met, 1997; 48: 381

[14] Taniguchi S, Shibata T.  Intermetallics, 1996; 4: S85

[15] Li H, Liu L M, Wang S Q, Ye H Q.  Acta Metall Sin, 2006; 42: 897

(李虹, 刘利明, 王绍青, 叶恒强. 金属学报, 2006; 42: 897)

[16] Li H, Wang S Q, Ye H Q.  J Mater Sci Technol, 2009; 25: 569

[17] Liu S Y, Shang J X, Wang F H, Liu S Y, Yue Z, Xu H B.  Phys Rev, 2009; 80B: 085414

[18] Liu S Y, Shang J X, Wang F H, Yue Z.  Phys Rev, 2009; 79B: 075419

[19] Liu S Y, Shang J X, Wang F H, Yue Z. J Physics: Condens Matter, 2009; 21: 225005

[20] Luthra K L.  Oxid Met, 1991; 36: 475

[21] Rahmel A, Spencer P J.  Oxid Met, 1991; 35: 53

[22] Kresse G, Furthmuller J.  Phys Rev, 1996; 54B: 11169

[23] Kresse G, Furthmuller J.  Comput Mater Sci, 1996; 6: 15

[24] Blochl P E.  Phys Rev, 1994; 50B: 17953

[25] Kresse G, Joubert D.  Phys Rev, 1999; 59B: 1758

[26] Perdew J P, Burke K, Ernzerhof M.  Phys Rev Lett, 1996; 77: 3865

[27] He J, Behera R K, Finnis M W, Li X, Dickey E C, Phillpot S R, Sinnott S B.  Acta Mater, 2007; 55: 4325

[28] Li X, Finnis M W, He J, Behera R K, Phillpot S R, Sinnott S B, Dickey E C.  Acta Mater, 2009; 57: 5882

[29] Abrahams S C, Bernstei J L.  J Chem Phys, 1971; 55: 3206

[30] Matsunaga K, Tanaka T, Yamamoto T, Ikuhara Y.  Phys Rev, 2003; 68B: 085110

[31] Boettger J C.  Phys Rev, 1997; 55B: 750

[32] Damour H, Schiferl D, Denner W, Schulz H, Holzapfel W B.  J Appl Phys, 1978; 49: 4411

[33] Li M S.  High Temperature Corrosion of Metals. Beijing: Metallurgical Industry Press, 2001: 11

(李美栓. 金属的高温腐蚀. 北京: 冶金工业出版社, 2001: 11)

[34] Wang L, Maxisch T, Ceder G.  Phys Rev, 2006; 73B: 195107

[35] Martinez J I, Hansen H A, Rossmeisl J, Norskov J K.  Phys Rev, 2009; 79B: 045120

[36] Sousa C, Illas F.  Phys Rev, 1994; 50B: 13974

[37] Marquez A M, Plata J J, Ortega Y, Sanz J F. J Phys Chem, 2011; 115C: 16970
[1] Jiangang NIU, Wei XIAO. The Lattice Instability Induced by Ti-Site Ni in B2 Austenite in TiNi Alloy[J]. 金属学报, 2019, 55(2): 267-273.
[2] Gang ZHOU, Lihua YE, Hao WANG, Dongsheng XU, Changgong MENG, Rui YANG. A First-Principles Study on Basal/Prismatic Reorientation-Induced Twinning Path and Alloying Effect in Hexagonal Metals[J]. 金属学报, 2018, 54(4): 603-612.
[3] Ronghua CUI, Xinyu WANG, Zhengchao DONG, Chonggui ZHONG. First Principles Study on Elastic and Thermodynamic Properties of Mg1-xZnx Alloys[J]. 金属学报, 2017, 53(9): 1133-1139.
[4] NIU Jiangang; WANG Baojun; WANG Cuibiao; TIAN Xiao. FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE, BONDING CHARACTERISTIC AND BONDING STRENGTH OF TiN(111)/BN/TiN(111) INTERFACE[J]. 金属学报, 2009, 45(10): 1185-1189.
[5] LIANG Shuhua; XU Lei; FANG Liang; FAN Zhikang. Microstructure and Antibacterial Properties of Cu--Contained Antibacterial Stainless Steel[J]. 金属学报, 2004, 40(3): 309-313 .
[6] LI Tiefan; HU Wusheng; SHEN Jianian(State Key Laboratory of Corrosion Science; Institute of Corrosion and Prolection of Metals; Chinese Academy of Sciences; Shenyang 110015). HIGH TEMPERATURE OXIDATION PERFORMANCE OF SUPERALLOY M41[J]. 金属学报, 1995, 31(24): 527-534.
[7] NING Yuantao;WEN Fei;ZHAO Huaizhi;DENG Deguo Kunming Institute of Precious Metals. INTERNAL OXIDATION OF Pd-Eu ALLOYS[J]. 金属学报, 1993, 29(9): 65-71.
[8] NING Yuantao;LI Yongnian Kunming Institute of Precious Metals. INTERNAL OXIDATION BEHAVIOR OF Pd-40Ag-1M (M=Zr, Y) ALLOYS[J]. 金属学报, 1989, 25(1): 96-103.
[9] YANG Rui;LI Dong;WAN Xiaojing Institute of Metal Research; Academia Sinica; Shenyang. PHASE BOUNDARY OF α_2 PRECIPITATION IN Ti-Al-La TERNARY SYSTEM[J]. 金属学报, 1988, 24(4): 288-290.
No Suggested Reading articles found!