Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (10): 1355-1365    DOI: 10.11900/0412.1961.2020.00010
Current Issue | Archive | Adv Search |
The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe
SONG Xuexin1,2, HUANG Songpeng1,2, WANG Chuan1, WANG Zhenyao1()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

SONG Xuexin, HUANG Songpeng, WANG Chuan, WANG Zhenyao. The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe. Acta Metall Sin, 2020, 56(10): 1355-1365.

Download:  HTML  PDF(4591KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The atmospheric corrosion of carbon steel is an extensive topic that has been studied by many authors who have proposed many mechanisms and techniques for studying the phenomena involved and have reported long term exposure data in many different regions throughout the world. However, there are few literatures that have discussed the corrosion results of carbon steel exposed for short-term time which can contribute to the understanding of the initial corrosion mechanisms. Therefore in this work, mass-loss measurement, SEM, XRD, infrared spectroscopy and electrochemical techniques have been used to investigate the initial corrosion evaluation of carbon steel exposed to a coastal-industrial atmospheric environment in Hongyanhe. Mass-loss results show that the short-term corrosion kinetic of carbon steel is in good fitting with linear function, and the average corrosion rate fluctuates over time and don't show the downward trend observed in long-term exposure experiments. Lepidocrocite, goethite and magnetite are identified in corrosion products formed on the surface of exposed carbon steel samples. The content of lepidocrocite shows a decreasing trend over exposure time, while goethite is the opposite. Magnetite appears in the later stages and keeps stable in amount. Pitting and an irregular localized corrosion can be observed clearly on the surface of carbon steel specimens exposed for 10 d. The corrosion product at pitting regions is circular flowery shape which varies in details as the physical and chemical environments change. The rust layer grows over time and eventually covers the entire surface of carbon steel samples exposed for more than 60 d, yet its thickness is uneven. The surface of rust layer has many nest-shaped structures that can't barricade the physical transmission effectively. The protective effect of rust layer has been further discussed in combination with electrochemical results.

Key words:  carbon steel      atmospheric corrosion      morphology      corrosion product      electrochemistry     
Received:  07 January 2020     
ZTFLH:  TG172.3  
Fund: National Natural Science Foundation of China(51671197)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00010     OR     https://www.ams.org.cn/EN/Y2020/V56/I10/1355

Fig.1  Thickness reduction and corrosion rate of carbon steel exposed to a coastal-industrial environment as a function of exposure time
Fig.2  Temperatures and relative humidities of Hongyanhe coastal-industrial atmosphere
Fig.3  The surface macro-morphologies of carbon steel exposed for 10 d (a), 20 d (b), 30 d (c), 60 d (d) and 120 d (e)
Color online
Fig.4  The surface micro-morphologies of carbon steel exposed for 10 d (a), 20 d (b), 30 d (c), 60 d (d) and 120 d (e)
Fig.5  SEM images and EDS analysis of carbon steel exposed to the costal-industrial atmospheric environment for 10 d
(a) irregular localized corrosion (b) annular structure (c) mushroom-shaped structure
(d) irregular circular area (e) EDS of irregular circular area in Fig.5d
Fig.6  SEM images and EDS analyses (Insets show the corresponding high magnified images) of carbon steel exposed to the costal-industrial environment for 60 d
(a) low magnification (b) EDS of cotton balls (goethite)
(c) EDS of flowery structure (lepidocrocite) (d) EDS of cigar-shaped structure (akaganeite)
Fig.7  Cross-sectional morphologies of the rust layer formed on the surface of carbon steel exposed for 10 d (a), 20 d (b), 30 d (c), 60 d (d) and 120 d (e)
Fig.8  XRD spectra of the scraped rust formed on carbon steel surface
Fig.9  The relative amount of corrosion products formed on carbon steel surface as a function of exposure time
Fig.10  Infrared spectra of corrosion product formed on carbon steel surface
Fig.11  Potentiodynamic polarization curves of unexposed and corroded carbon steel samples as a function of exposure time (E—potential, I—current density)
Color online
Fig.12  EIS of corroded carbon steel as a function of exposure time (Z—impedance)
(a) Nyquist plots (b) Bode plots
Fig.13  Equivalent circuit used for describing the corrosion of exposed carbon steel samples (R1—the resistance of electrolyte, Q—the capacitance of corrosion product, R2—the charge transfer resistance in corroded area, W—Warburg diffusion impedance, C—the double layer capacitance, R3—the charge transfer resistance in substrate area)
Fig.14  The resistances and capacities of corroded area (a) and substrate area (b) as a function of exposure time
[1] Feliu S, Morcillo M. Atmospheric Corrosion [M]. New York: John Wiley and Sons, 1982: 913
[2] Almeida E, Morcillo M, Rosales B, et al. Atmospheric corrosion of mild steel. Part I—Rural and urban atmospheres [J]. Mater. Corros., 2000, 51: 859
doi: 10.1002/(ISSN)1521-4176
[3] Almeida E, Morcillo M, Rosales B. Atmospheric corrosion of mild steel. Part II—Marine atmospheres [J]. Mater. Corros., 2000, 51: 865
doi: 10.1002/(ISSN)1521-4176
[4] Natesan M, Venkatachari G, Palaniswamy N. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India [J]. Corros. Sci., 2006, 48: 3584
doi: 10.1016/j.corsci.2006.02.006
[5] de la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
doi: 10.1016/j.corsci.2010.10.007
[6] Wang L, Guo C Y, Xiao K, et al. Corrosion behavior of carbon steels Q235 and Q450 in dry hot atmosphere at Turpan district for four years [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 431
(王 力, 郭春云, 肖 葵等. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2018, 38: 431)
doi: 10.11902/1005.4537.2017.153
[7] Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corros. Sci., 1999, 41: 1687
doi: 10.1016/S0010-938X(99)00005-0
[8] Liang C F, Hou W T. Sixteen-year atmospheric corrosion exposure study of steels [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 1
(梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究 [J]. 中国腐蚀与防护学报, 2005, 25: 1)
[9] Lan T T N, Thoa N T P, Nishimura R, et al. Atmospheric corrosion of carbon steel under field exposure in the southern part of Vietnam [J]. Corros. Sci., 2006, 48: 179
doi: 10.1016/j.corsci.2004.11.018
[10] Castaño J G, Botero C A, Restrepo A H, et al. Atmospheric corrosion of carbon steel in Colombia [J]. Corros. Sci., 2010, 52: 216
doi: 10.1016/j.corsci.2009.09.006
[11] Asami K, Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years [J]. Corros. Sci., 2003, 45: 2671
doi: 10.1016/S0010-938X(03)00070-2
[12] Wang Z Y, Yu Q C, Wang C, et al. Corrosion behaviors of steels in marine atmospheric environment with SO2 pollution [J]. Chin. Sci. Bull., 2012, 57: 2991
doi: 10.1360/972011-1614
(王振尧, 于全成, 汪 川等. 在含硫污染的海洋大气环境中核电用钢的腐蚀行为 [J]. 科学通报, 2012, 57: 2991)
doi: 10.1360/972011-1614
[13] Allam I M, Arlow J S, Saricimen H. Initial stages of atmospheric corrosion of steel in the Arabian Gulf [J]. Corros. Sci., 1991, 32: 417
doi: 10.1016/0010-938X(91)90123-7
[14] Han W, Yu G C, Wang Z Y, et al. Characterisation of initial atmospheric corrosion carbon steels by field exposure and laboratory simulation [J]. Corros. Sci., 2007, 49: 2920
doi: 10.1016/j.corsci.2007.01.009
[15] Cao G W, Liu Y W, Zhang D D, et al. Corrosion behavior of Q235 and Q345 carbon steel in Hongyanhe atmosphere [J]. Corros. Prot., 2018, 39: 24
(曹公望, 刘雨薇, 张丹丹等. Q235和Q345钢在红沿河大气环境中的腐蚀行为 [J]. 腐蚀与防护, 2018, 39: 24)
[16] Raman A, Kuban B, Razvan A. The application of infrared spectroscopy to the study of atmospheric rust systems—I. Standard spectra and illustrative applications to identify rust phases in natural atmospheric corrosion products [J]. Corros. Sci., 1991, 32: 1295
doi: 10.1016/0010-938X(91)90049-U
[17] Qu Q, Yan C W, Zhang L, et al. Synergism of NaCl and SO2 in the initial atmospheric corrosion of A3 steel [J]. Acta Metall. Sin., 2002, 38: 1062
(屈 庆, 严川伟, 张 蕾等. NaCl和SO2在A3钢初期大气腐蚀中的协同效应 [J]. 金属学报, 2002, 38: 1062)
[18] Sagoe-Crentsil K K, Glasser F P. Constitution of green rust and its significance to the corrosion of steel in portland cement [J]. Corrosion, 1993, 49: 457
doi: 10.5006/1.3316072
[19] Antunes R A, Costa I, de Faria D L A. Characterization of corrosion products formed on steels in the first months of atmospheric exposure [J]. Mater. Res., 2003, 6: 403
doi: 10.1590/S1516-14392003000300015
[20] Weissenrieder J, Kleber C, Schreiner M, et al. In situ studies of sulfate nest formation on iron [J]. J. Electrochem. Soc., 2004, 151: B497
[21] Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
doi: 10.1016/j.corsci.2009.02.009
[22] Guo M X, Pan C, Wang Z Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
(郭明晓, 潘 晨, 王振尧等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65)
doi: 10.11900/0412.1961.2017.00142
[23] Arroyave C, Morcillo M. Atmospheric corrosion products in iron and steels [J]. Trends Corros. Res., 1997, 2: 1
[24] Rösler K, Baum H, Kukurs O, et al. Character and behavior of a layer of corrosion products on low-alloy steels in natural conditions [J]. Prot. Met., 1981, 17: 514
[25] Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
doi: 10.1016/0010-938X(94)90158-9
[26] Yang X M. Study on the infrared spectra and raman spectra of steel rusty layer with atmospheric corrosion [J]. Spectrosc. Spec. Anal., 2006, 26: 2247
(杨晓梅. 钢大气腐蚀锈层的红外、拉曼光谱研究 [J]. 光谱学与光谱分析, 2006, 26: 2247)
[27] Nishimura T, Katayama H, Noda K, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion, 2000, 56: 935
doi: 10.5006/1.3280597
[28] Hu H L, Li N. Electrochemical Measurment [M]. Beijing: National Defence Industry Press, 2011: 115
(胡会利, 李 宁. 电化学测量 [M]. 北京: 国防工业出版社, 2011: 115)
[29] Kihira H, Ito S, Murata T. Quantitative classification of patina conditions for weathering steel using a recently developed instrument [J]. Corrosion, 1989, 45: 347
doi: 10.5006/1.3577867
[30] Matsushima I, Ueno T. On the protective nature of atmosph rust on low-alloy steel [J]. Corros. Sci., 1971, 11: 129
doi: 10.1016/S0010-938X(71)80089-6
[31] Suzuki I, Masuko N, Hisamatsu Y. Electrochemical properties of iron rust [J]. Corros. Sci., 1979, 19: 521
doi: 10.1016/S0010-938X(79)80135-3
[32] Pan C, Guo M X, Han W, et al. Study of corrosion evolution of carbon steel exposed to an industrial atmosphere [J]. Corros. Eng. Sci. Technol., 2019, 54: 241
doi: 10.1080/1478422X.2019.1574955
[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[3] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[4] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[5] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
[6] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[7] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[8] LIU Yuwei, GU Tianzhen, WANG Zhenyao, WANG Chuan, CAO Gongwang. Corrosion Behavior of Q235 and Q450NQR1 Exposed to Marine Atmospheric Environment in Nansha, China for 34 Months[J]. 金属学报, 2022, 58(12): 1623-1632.
[9] HUANG Songpeng, PENG Can, CAO Gongwang, WANG Zhenyao. Corrosion Behavior of Copper-Nickel Alloys Protected by BTA in Simulated Urban Atmosphere[J]. 金属学报, 2021, 57(3): 317-326.
[10] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[11] LIU Yuwei, ZHAO Hongtao, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel and Weathering Steel in Nansha Marine Atmosphere[J]. 金属学报, 2020, 56(9): 1247-1254.
[12] ZHANG Xinfang, YAN Longge. Regulating the Non-Metallic Inclusions by Pulsed Electric Current in Molten Metal[J]. 金属学报, 2020, 56(3): 257-277.
[13] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[14] WANG Li,DONG Chaofang,ZHANG Dawei,SUN Xiaoguang,Chowwanonthapunya Thee,MAN Cheng,XIAO Kui,LI Xiaogang. Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand[J]. 金属学报, 2020, 56(1): 119-128.
[15] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
No Suggested Reading articles found!