Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (12): 1519-1526    DOI: 10.11900/0412.1961.2019.00138
Research paper Current Issue | Archive | Adv Search |
Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy
JIN Hao1,2,JIA Qing1,LIU Ronghua1,XIAN Quangang1,CUI Yuyou1,XU Dongsheng1,YANG Rui1()
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article: 

JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy. Acta Metall Sin, 2019, 55(12): 1519-1526.

Download:  HTML  PDF(22946KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Button ingots were prepared by arc melting and feed bars for directional solidification were prepared by optimized drop casting technique. The Ti-43Al-3Si directionally solidified bars with lamellar boundaries perpendicular to the growth direction were prepared at the growth rate of 180 mm/h in an optical floating zone furnace. Cylindrical sections were cut from these perpendicular lamellae with appropriate direction and then fixed on polycrystalline TiAl bars by mechanical setting method to serve as the initial seeds. The ultimate Ti-43Al-3Si seeds with parallel lamellar microstructure were successfully prepared from these initial seeds at the growth rate of 5 mm/h. To avoid the nucleation of stray grains, drop-cast bars with the shape of frustum of a cone were used for the preparation of ultimate seeds. At the growth rates of 5 and 180 mm/h, the primary phase of Ti-43Al-3Si alloy was always the α phase. Polysynthetically twinned (PST) crystals of Ti-47Al alloy were obtained from the Ti-43Al-3Si ultimate seeds and the seeding process was studied by microscopic analysis. Lamellar microstructure of the seed kept stable and recrystallization of the seed was not found. Lamellar orientation of Ti-47Al PST crystals was successfully controlled by the ultimate Ti-43Al-3Si seed.

Key words:  TiAl alloy      polysynthetically twinned crystal      seed technique      directional solidification      optical floating zone furnace     
Received:  30 April 2019     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(No.51701209)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00138     OR     https://www.ams.org.cn/EN/Y2019/V55/I12/1519

Fig.1  Schematics of drop casting (a) and crystal growth in an optical floating zone furnace (b), and dimensions of the drop-cast bar with the shape of frustum (unit: mm) (c) (P1, P2—pressure; Tmax—temperature of melting zone)
Fig.2  Macrostructures of the longitudinal section of drop-cast bar processed at the pressure differential of 30 kPa (a) and 60 kPa (b)
Fig.3  Microstructures of the Ti-43Al-3Si DS bar solidified at the growth rate of 180 mm/h(a) the perpendicular lamellae (b) dendrites morphology in the quench zone
Fig.4  Cylindrical seed section from the Ti-43Al-3Si DS bar solidified at the growth rate of 180 mm/h (a), and connections of the seed section with the holding bar by argon arc welding (b) and mechanical setting (c)
Fig.5  Microstructures (a~c) and macrograph (d) of the ultimate seed solidified at the growth rate of 5 mm/h(a) bottom section of the seed (b) end part of the seed(c) dendrites morphology in the quench zone (d) photo of the ultimate seed bar
Fig.6  Ti-47Al PST crystals grown from the ultimate seed(a) macrostructure of the longitudinal section(b~g) microstructures of the seed after seeding process (b), the transition region (c), the stray grains in the transition region (d, e), the main body (f) and γ phase near the quench zone (g) corresponding to the boxes in Fig.6a
Fig.7  BSE image of the precipitate in the quench zone (a) and the EDS analyses (b)
[1] Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
[1] (杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129)
[2] Wu X H. Review of alloy and process development of TiAl alloys [J]. Intermetallics, 2006, 14: 1114
[3] Kim Y W, Dimiduk D M. Progress in the understanding of gamma titanium aluminides [J]. JOM, 1991, 43(8): 40
[4] Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131
[5] Liu Z C, Lin J P, Li S J, et al. Effects of Nb and Al on the microstructures and mechanical properties of high Nb containing TiAl base alloys [J]. Intermetallics, 2002, 10: 653
[6] Inui H, Oh M H, Nakamura A, et al. Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl [J]. Acta Metall. Mater., 1992, 40: 3095
[7] Oh M H, Inui H, Misaki M, et al. Environmental-effects on the room-temperature ductility of polysynthetically twinned (PST) crystals of binary and some ternary TiAl compounds [A]. Proceeding of the 5th High-Temperature Ordered Intermetallic Alloys V [C]. Boston, MA: Mater. Res. Soc. Symp. Proc., 1993, 288: 1001
[8] Johnson D R, Inui H, Yamaguchi M. Directional solidification and microstructural control of the TiAl/Ti3Al lamellar microstructure in TiAl-Si alloys [J]. Acta Mater., 1996, 44: 2523
[9] Johnson D R, Masuda Y, Inui H, et al. Alignment of the TiAl/Ti3Al lamellar microstructure in TiAl alloys by growth from a seed material [J]. Acta Mater., 1997, 45: 2523
[10] Umeda H, Kishida K, Inui H, et al. Effects of Al-concentration and lamellar spacing on the room-temperature strength and ductility of PST crystals of TiAl [J]. Mater. Sci. Eng., 1997, A239-240: 336
[11] Yamanaka T, Johnson D R, Inui H, et al. Directional solidification of TiAl-Re-Si alloys with aligned γ/α2 lamellar microstructures [J]. Intermetallics, 1999, 7: 779
[12] Johnson D R, Inui H, Muto S, et al. Microstructural development during directional solidification of α-seeded TiAl alloys [J]. Acta Mater., 2006, 54: 1077
[13] Fu H Z, Su Y Q, Guo J J, et al. The solidification behavior of high temperature intermetallics [J]. Acta Metall. Sin., 2002, 38: 1127
[13] (傅恒志, 苏彦庆, 郭景杰等. 高温金属间化合物的定向凝固特性 [J]. 金属学报, 2002, 38: 1127)
[14] Yamaguchi M, Inui H, Yokoshima S, et al. Recent progress in our understanding of deformation and fracture of two-phase and single-phase TiAl alloys [J]. Mater. Sci. Eng., 1996, A213: 25
[15] Lee H N, Johnson D R, Inui H, et al. Microstructural control through seeding and directional solidification of TiAl alloys containing Mo and C [J]. Acta Mater., 2000, 48: 3221
[16] Lee H N, Johnson D R, Inui H, et al. Directional solidification and creep deformation of a Ti-46Al-1.5Mo-0.2C (at. %) alloy [J]. Intermetallics, 2002, 10: 841
[17] Lee H N, Johnson D R, Inui H, et al. A composition window in the TiAl-Mo-Si system suitable for lamellar structure control through seeding and directional solidification [J]. Mater. Sci. Eng., 2002, A329-331: 19
[18] Kim J H, Kim S W, Lee H N, et al. Effects of Si and C additions on the thermal stability of directionally solidified TiAl-Nb alloys [J]. Intermetallics, 2005, 13: 1038
[19] Luo W Z, Shen J, Li Q L, et al. Microstructural evolution of Ti-47Al alloy during directional solidification by seeding method [J]. Acta Metall. Sin., 2007, 43: 897
[19] (罗文忠, 沈 军, 李庆林等. Ti-47Al合金籽晶法定向凝固过程中的组织演化 [J]. 金属学报, 2007, 43: 897)
[20] Zheng X Q, Shen J, Ding H S, et al. Preparation of fully lamellar microstructure Ti-43Al-3Si alloy with alignment perpendicular to the growth direction in steel mould [J]. Mater. Rep., 2005, 19(3): 118
[20] (郑循强, 沈 军, 丁宏升等. 单一取向的Ti-43Al-3Si全片层组织制备 [J]. 材料导报, 2005, 19(3): 118)
[21] Luo W Z, Shen J, Li Q L, et al. Effects of growth rate on microstructure of directionally solidified Ti-43Al-3Si alloy with a seed technique [J]. Acta Metall. Sin., 2006, 42: 1238
[21] (罗文忠, 沈 军, 李庆林等. 抽拉速率对Ti-43Al-3Si合金籽晶法定向凝固组织的影响 [J]. 金属学报, 2006, 42: 1238)
[22] Fan J L, Li X Z, Guo J J, et al. Structure evolution of directionally solidified Ti-43Al-3Si alloy I. Microstructure evolution in the transition region [J]. Acta Metall. Sin., 2009, 45: 302
[22] (樊江磊, 李新中, 郭景杰等. 定向凝固Ti-43Al-3Si合金的组织演化规律 Ⅰ. 初始过渡区组织演化规律 [J]. 金属学报, 2009, 45: 302)
[23] Li X Z, Fan J L, Guo J J, et al. Structure evolution of directionally solidified Ti-43Al-3Si alloy II. Microstructure evolution in the steady-state growth region [J]. Acta Metall. Sin., 2009, 45: 308
[23] (李新中, 樊江磊, 郭景杰等. 定向凝固Ti-43Al-3Si合金的组织演化规律 Ⅱ. 稳态生长区组织演化规律 [J]. 金属学报, 2009, 45: 308)
[24] Liu R H, Cui Y Y, Yang R. Effect of seed shape and size on the seeding of TiAl directional solidification [J]. Rare Met. Mater. Eng., 2008, 37(suppl.3): 141
[24] (刘荣华, 崔玉友, 杨 锐. 籽晶形状和尺寸对TiAl合金引晶生长的影响 [J]. 稀有金属材料与工程, 2008, 37(增刊3): 141)
[25] Luo W Z, Shen J, Li Q L, et al. Preparation of aligned lamellar microstructure in TiAl alloys by directional solidification with a seed technique [J]. Acta Metall. Sin., 2007, 43: 1287
[25] (罗文忠, 沈 军, 李庆林等. TiAl合金定向全片层组织的籽晶法制备 [J]. 金属学报, 2007, 43: 1287)
[26] Koohpayeh S M, Fort D, Abell J S. The optical floating zone technique: A review of experimental procedures with special reference to oxides [J]. Prog. Cryst. Growth Charact. Mater., 2008, 54: 121
[27] Koohpayeh S M, Fort D, Bradshaw A, et al. Thermal characterization of an optical floating zone furnace: A direct link with controllable growth parameters [J]. J. Cryst. Growth, 2009, 311: 2513
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[5] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[6] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[7] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[8] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[9] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[10] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[11] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[12] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[13] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[14] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[15] Zhanxing CHEN,Hongsheng DING,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse[J]. 金属学报, 2019, 55(5): 611-618.
No Suggested Reading articles found!