|
|
Effect of Crevice Corrosion on the Degradation Rate ofFe-30Mn-1C Alloy |
Zheng MA, Xi LU, Ming GAO, Lili TAN( ), Ke YANG |
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
Zheng MA, Xi LU, Ming GAO, Lili TAN, Ke YANG. Effect of Crevice Corrosion on the Degradation Rate ofFe-30Mn-1C Alloy. Acta Metall Sin, 2018, 54(7): 1010-1018.
|
Abstract Fe-30Mn-1C alloy has great potential to become degradable cardiovascular stent material due to its degradability, excellent comprehensive mechanical properties and biocompatibility. In this work, in order to improve the degradation rate of Fe-30Mn-1C alloy, laser technology was used to process pores with different pore diameters on the samples, and the design of the scaffold was combined with crevice corrosion. The degradation behavior of the alloy was studied through in vitro soaking weight loss experiments and electrochemical tests. The results showed that crevice corrosion can increase the degradation rate of Fe-30Mn-1C alloy significantly.
|
Received: 27 October 2017
|
|
Fund: Supported by National Basic Research Program of China (Nos.2012CB619101 and 2012CB619102) and National High Technology Research and Development Program of China (No.2015AA033701) |
[1] | Li J J.Inflammatory response, drug-eluting stent and restenosis[J]. Chin. Med. J.(Engl.), 2008, 121: 566 | [2] | Li J J.The study on the occurrence of restenosis is a long-term problem in the interventional therapy of coronary heart disease[J]. Chin. Circ. J., 2008, 23: 401(李建军. 再狭窄发生的相关研究是冠心病介入治疗的长期课题[J]. 中国循环杂志, 2008, 23: 401) | [3] | Zhou J, Ding Y.Thinking on the comparation of therapies on coronary heart disease[J]. Med. Philos.(Clin. Dec. Mak. Forum Ed.), 2006, 27(4): 36(周江, 丁彦. 冠心病治疗方法的比较思考[J]. 医学与哲学(临床决策论坛版), 2006, 27(4): 36) | [4] | Wei L L, Liu P, Zhang H Y.Therapy choices for coronary heart disease[J]. Med. Philos.(Clin. Dec. Mak. Forum Ed.), 2009, 30(7): 8(魏来临, 刘平, 张华岩. 冠心病理想治疗方式的选择[J]. 医学与哲学(临床决策论坛版), 2009, 30(7): 8) | [5] | Boden W E, O'Rourke R A, Teo K K, et al. Optimal medical therapy with or without PCI for stable coronary disease[J]. N. Engl. J. Med., 2007, 356: 1503 | [6] | Liu J, Cong H L.Progress of interventional therapy for coronary artery disease[J]. Med. Recapitul., 2008, 14: 2512(刘健, 丛洪良. 冠心病介入治疗的进展[J]. 医学综述, 2008, 14: 2512) | [7] | Wu Y H, Zhou X C, Zheng Y F, et al.Research progress on biodegradable metallic endovascular stents[J]. Mater. China, 2012, 31(9): 27(吴远浩, 周晓晨, 郑玉峰等. 可降解金属血管支架研究进展[J]. 中国材料进展, 2012, 31(9): 27) | [8] | Virtanen S.Biodegradable Mg and Mg alloys: Corrosion and biocompatibility[J]. Mater. Sci. Eng., 2011, B176: 1600 | [9] | Wagener V, Schilling A, Mainka A, et al.Cell adhesion on surface-functionalized magnesium[J]. ACS Appl. Mater. Interfaces, 2016, 8: 11998 | [10] | Schinhammer M, H?nzi A C, L?ffler J F, et al.Design strategy for biodegradable Fe-based alloys for medical applications[J]. Acta Biomater., 2010, 6: 1705 | [11] | Schinhammer M, Gerber I, Hanzi A C, et al.On the cytocompatibility of biodegradable Fe-based alloys[J]. Mater. Sci. Eng., 2013, C33: 782 | [12] | Purnama, A, Hermawan, H, Champetier, S, et al. Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents[J]. Acta Biomater., 2013, 9: 8746 | [13] | Xu W L, Lu X, Tan L L, et al.Study on properties of a novel biodegradable Fe-30Mn-1C alloy[J]. Acta Metall. Sin., 2011, 47: 1342(徐文利, 陆喜, 谭丽丽等. 新型生物可降解Fe-30Mn-1C合金的性能研究[J]. 金属学报, 2011, 47: 1342) | [14] | Francis A, Yang Y, Virtanen S, et al.Iron and iron-based alloys for temporary cardiovascular applications[J]. J. Mater. Sci.: Mater. Med., 2015, 26: 138 | [15] | Mouzou E, Paternoster C, Tolouei R, et al.In vitro degradation behavior of Fe-20Mn-1.2C alloy in three different pseudo-physiological solutions[J]. Mater. Sci. Eng., 2016, C61: 564 | [16] | Obayi C S, Tolouei R, Paternoster C, et al.Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants[J]. Acta Biomater., 2015, 17: 68 | [17] | Huang T, Cheng J, Zheng Y F.In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering[J]. Mater. Sci. Eng., 2014, C35: 43 | [18] | ?apek J, Vojtěch D.Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy[J]. Mater. Sci. Eng., 2014, C43: 494 | [19] | Zhang B H, Cong W B, Yang P.Metal Electrochemical Corrosion and Protection [M]. Beijing: Chemical Industry Press, 2005: 79(张宝宏, 从文博, 杨萍. 金属电化学腐蚀与防护 [M]. 北京: 化学工业出版社, 2005: 79) | [20] | Hermawan H, Dubé D, Mantovani D. Development of degradable Fe-35Mn alloy for biomedical application [J]. Adv. Mater. Res., 2007, 15-17: 107 | [21] | Hermawan H, Purnama A, Dube D, et al.Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies[J]. Acta Biomater., 2010, 6: 1852 | [22] | Hermawan H, Moravej M, Dubé D, et al. Degradation behaviour of metallic biomaterials for degradable stents [J]. Adv. Mater. Res., 2007, 15-17: 113 | [23] | Xu W L.Study on Fe-based biodegradable metallic coronary artery stents [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011(徐文利. 铁基可降解心血管支架材料研究 [D]. 沈阳: 中国科学院金属研究所, 2011) | [24] | Gong M.Metal Corrosion Theory and Corrosion Control [M]. Beijing: Chemical Industry Press, 2009: 110(龚敏. 金属腐蚀理论及腐蚀控制 [M]. 北京: 化学工业出版社, 2009: 110) | [25] | Liu D X.Corrosion and Protection of Materials [M]. Xi'an: Northwest Industrial University Press, 2006: 83(刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 83) | [26] | Zhu R Z.Corrosion Science of Metal [M]. Beijing: Metallurgical Industry Press, 1989: 132(朱日彰. 金属腐蚀学 [M]. 北京: 冶金工业出版社, 1989: 132) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|