Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (7): 1010-1018    DOI: 10.11900/0412.1961.2017.00451
Current Issue | Archive | Adv Search |
Effect of Crevice Corrosion on the Degradation Rate ofFe-30Mn-1C Alloy
Zheng MA, Xi LU, Ming GAO, Lili TAN(), Ke YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Zheng MA, Xi LU, Ming GAO, Lili TAN, Ke YANG. Effect of Crevice Corrosion on the Degradation Rate ofFe-30Mn-1C Alloy. Acta Metall Sin, 2018, 54(7): 1010-1018.

Download:  HTML  PDF(10067KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe-30Mn-1C alloy has great potential to become degradable cardiovascular stent material due to its degradability, excellent comprehensive mechanical properties and biocompatibility. In this work, in order to improve the degradation rate of Fe-30Mn-1C alloy, laser technology was used to process pores with different pore diameters on the samples, and the design of the scaffold was combined with crevice corrosion. The degradation behavior of the alloy was studied through in vitro soaking weight loss experiments and electrochemical tests. The results showed that crevice corrosion can increase the degradation rate of Fe-30Mn-1C alloy significantly.

Key words:  iron-based alloy      biodegradable      crevice corrosion      cardiovascular stent     
Received:  27 October 2017     
ZTFLH:  R318.08  
Fund: Supported by National Basic Research Program of China (Nos.2012CB619101 and 2012CB619102) and National High Technology Research and Development Program of China (No.2015AA033701)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00451     OR     https://www.ams.org.cn/EN/Y2018/V54/I7/1010

Fig.1  Schematic of Fe-30Mn-1C alloy with pore structure (unit: mm)
Fig.2  Degradation rates of Fe-30Mn-1C alloy with different sizes of pores immersed in Hank’s solution
Fig.3  Degradation increasing rates of Fe-30Mn-1C alloy with different sizes of pores immersed in Hank’s solution
Fig.4  Macro-images of Fe-30Mn-1C alloy with different sizes of pores immersed in Hank’s solution (pore size (mm): S0~S4: 0, 0.07, 0.10, 0.15; immersion time (d): T1~T3: 7, 30, 60)
Fig.5  SEM corrosion morphologies of Fe-30Mn-1C alloy with different sizes of pores immersed in Hank’s solution before pickling (The insets show the local enlarged images of the pores)
Fig.6  SEM corrosion morphologies of Fe-30Mn-1C alloy with different sizes of pores immersed in Hank’s solution after pickling (The insets show the local enlarged images of the apertures)
Fig.7  Elements EDS analyses on the deposition layer of Fe-30Mn-1C alloy immersed in Hank’s solution (The inset shows the corrosion morphology and product)
Fig.8  Cross-sectional morphology and elements EDS analyses on the cross section of Fe-30Mn-1C alloy with pore structure after immersion (The arrows show the corrosion areas)
Fig.9  Cross-sectional morphologies of Fe-30Mn-1C alloy with different sizes of pores immersed in Hank’s solution (T0: 0 d; the insets show the local enlarged images of the apertures)
Pore size Surface area Adding rate
mm cm2 %
0.00 2.08 -
0.07 2.17 4.5
0.10 2.20 5.8
0.15 2.23 7.2
Table 1  Surface areas of Fe-30Mn-1C alloys with different-size pores
Fig.10  Schematic of degradation mechanism of Fe-30Mn-1C alloys with pore structure during immersion (D—diameter of pore)
[1] Li J J.Inflammatory response, drug-eluting stent and restenosis[J]. Chin. Med. J.(Engl.), 2008, 121: 566
[2] Li J J.The study on the occurrence of restenosis is a long-term problem in the interventional therapy of coronary heart disease[J]. Chin. Circ. J., 2008, 23: 401(李建军. 再狭窄发生的相关研究是冠心病介入治疗的长期课题[J]. 中国循环杂志, 2008, 23: 401)
[3] Zhou J, Ding Y.Thinking on the comparation of therapies on coronary heart disease[J]. Med. Philos.(Clin. Dec. Mak. Forum Ed.), 2006, 27(4): 36(周江, 丁彦. 冠心病治疗方法的比较思考[J]. 医学与哲学(临床决策论坛版), 2006, 27(4): 36)
[4] Wei L L, Liu P, Zhang H Y.Therapy choices for coronary heart disease[J]. Med. Philos.(Clin. Dec. Mak. Forum Ed.), 2009, 30(7): 8(魏来临, 刘平, 张华岩. 冠心病理想治疗方式的选择[J]. 医学与哲学(临床决策论坛版), 2009, 30(7): 8)
[5] Boden W E, O'Rourke R A, Teo K K, et al. Optimal medical therapy with or without PCI for stable coronary disease[J]. N. Engl. J. Med., 2007, 356: 1503
[6] Liu J, Cong H L.Progress of interventional therapy for coronary artery disease[J]. Med. Recapitul., 2008, 14: 2512(刘健, 丛洪良. 冠心病介入治疗的进展[J]. 医学综述, 2008, 14: 2512)
[7] Wu Y H, Zhou X C, Zheng Y F, et al.Research progress on biodegradable metallic endovascular stents[J]. Mater. China, 2012, 31(9): 27(吴远浩, 周晓晨, 郑玉峰等. 可降解金属血管支架研究进展[J]. 中国材料进展, 2012, 31(9): 27)
[8] Virtanen S.Biodegradable Mg and Mg alloys: Corrosion and biocompatibility[J]. Mater. Sci. Eng., 2011, B176: 1600
[9] Wagener V, Schilling A, Mainka A, et al.Cell adhesion on surface-functionalized magnesium[J]. ACS Appl. Mater. Interfaces, 2016, 8: 11998
[10] Schinhammer M, H?nzi A C, L?ffler J F, et al.Design strategy for biodegradable Fe-based alloys for medical applications[J]. Acta Biomater., 2010, 6: 1705
[11] Schinhammer M, Gerber I, Hanzi A C, et al.On the cytocompatibility of biodegradable Fe-based alloys[J]. Mater. Sci. Eng., 2013, C33: 782
[12] Purnama, A, Hermawan, H, Champetier, S, et al. Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents[J]. Acta Biomater., 2013, 9: 8746
[13] Xu W L, Lu X, Tan L L, et al.Study on properties of a novel biodegradable Fe-30Mn-1C alloy[J]. Acta Metall. Sin., 2011, 47: 1342(徐文利, 陆喜, 谭丽丽等. 新型生物可降解Fe-30Mn-1C合金的性能研究[J]. 金属学报, 2011, 47: 1342)
[14] Francis A, Yang Y, Virtanen S, et al.Iron and iron-based alloys for temporary cardiovascular applications[J]. J. Mater. Sci.: Mater. Med., 2015, 26: 138
[15] Mouzou E, Paternoster C, Tolouei R, et al.In vitro degradation behavior of Fe-20Mn-1.2C alloy in three different pseudo-physiological solutions[J]. Mater. Sci. Eng., 2016, C61: 564
[16] Obayi C S, Tolouei R, Paternoster C, et al.Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants[J]. Acta Biomater., 2015, 17: 68
[17] Huang T, Cheng J, Zheng Y F.In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering[J]. Mater. Sci. Eng., 2014, C35: 43
[18] ?apek J, Vojtěch D.Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy[J]. Mater. Sci. Eng., 2014, C43: 494
[19] Zhang B H, Cong W B, Yang P.Metal Electrochemical Corrosion and Protection [M]. Beijing: Chemical Industry Press, 2005: 79(张宝宏, 从文博, 杨萍. 金属电化学腐蚀与防护 [M]. 北京: 化学工业出版社, 2005: 79)
[20] Hermawan H, Dubé D, Mantovani D. Development of degradable Fe-35Mn alloy for biomedical application [J]. Adv. Mater. Res., 2007, 15-17: 107
[21] Hermawan H, Purnama A, Dube D, et al.Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies[J]. Acta Biomater., 2010, 6: 1852
[22] Hermawan H, Moravej M, Dubé D, et al. Degradation behaviour of metallic biomaterials for degradable stents [J]. Adv. Mater. Res., 2007, 15-17: 113
[23] Xu W L.Study on Fe-based biodegradable metallic coronary artery stents [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011(徐文利. 铁基可降解心血管支架材料研究 [D]. 沈阳: 中国科学院金属研究所, 2011)
[24] Gong M.Metal Corrosion Theory and Corrosion Control [M]. Beijing: Chemical Industry Press, 2009: 110(龚敏. 金属腐蚀理论及腐蚀控制 [M]. 北京: 化学工业出版社, 2009: 110)
[25] Liu D X.Corrosion and Protection of Materials [M]. Xi'an: Northwest Industrial University Press, 2006: 83(刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 83)
[26] Zhu R Z.Corrosion Science of Metal [M]. Beijing: Metallurgical Industry Press, 1989: 132(朱日彰. 金属腐蚀学 [M]. 北京: 冶金工业出版社, 1989: 132)
[1] SHEN Gang, ZHANG Wentai, ZHOU Chao, JI Huanzhong, LUO En, ZHANG Haijun, WAN Guojiang. Mechanical Properties and Degradation Behavior of Hot-Extruded Zn-2Cu-0.5Zr Alloy[J]. 金属学报, 2022, 58(6): 781-791.
[2] QIAN Yi, YUAN Guangyin. Research Status, Challenges, and Countermeasures of Biodegradable Zinc-Based Vascular Stents[J]. 金属学报, 2021, 57(3): 272-282.
[3] ZHENG Yufeng, XIA Dandan, SHEN Yunong, LIU Yunsong, XU Yuqian, WEN Peng, TIAN Yun, LAI Yuxiao. Additively Manufactured Biodegrabable Metal Implants[J]. 金属学报, 2021, 57(11): 1499-1520.
[4] Jianan ZOU, Xiaolu PANG, Kewei GAO. Crevice Corrosion of X70 and 3Cr Low Alloy Steels Under Supercritical CO2 Condition[J]. 金属学报, 2018, 54(4): 537-546.
[5] Yufeng ZHENG,Yuanhao WU. Revolutionizing Metallic Biomaterials[J]. 金属学报, 2017, 53(3): 257-297.
[6] Jiahui DONG, Lili TAN, Ke YANG. Research of Biodegradable Mg-Based Metals as Bone Graft Substitutes[J]. 金属学报, 2017, 53(10): 1197-1206.
[7] Guangyin YUAN, Jialin NIU. Research Progress of Biodegradable Magnesium Alloys for Orthopedic Applications[J]. 金属学报, 2017, 53(10): 1168-1180.
[8] Yufeng ZHENG, Hongtao YANG. Research Progress in Biodegradable Metals forStent Application[J]. 金属学报, 2017, 53(10): 1227-1237.
[9] Lili TAN, Junxiu CHEN, Xiaoming YU, Ke YANG. Recent Advances on Biodegradable MgYREZrMagnesium Alloy[J]. 金属学报, 2017, 53(10): 1207-1214.
[10] XU Qiufa, PANG Xiaolu, LIU Quanlin, GAO Kewei. CREVICE CORROSION OF LOW ALLOY STEEL AND CARBON STEEL IN THE SIMULATED GROUNDWATER AT 90 ℃[J]. 金属学报, 2014, 50(6): 659-666.
[11] YU Qiaohong, LIU Chao, PANG Xiaolu, LIU Quanlin, GAO Kewei. CREVICE CORROSION BEHAVIORS OF Q235 WELD JOINT[J]. 金属学报, 2014, 50(11): 1319-1326.
[12] WEI Xin, DONG Junhua, KE Wei. CREVICE CORROSION OF GRADE-2 Ti IN SIMULATED GROUNDWATER FOR GEOLOGICAL DISPOSAL OF HIGH-LEVEL RADIOACTIVE NUCLEAR WASTE[J]. 金属学报, 2013, 49(6): 675-681.
[13] XU Wenli LU Xi TAN Lili YANG Ke. STUDY ON PROPERTIES OF A NOVEL BIODEGRADABLE Fe–30Mn–1C ALLOY[J]. 金属学报, 2011, 47(10): 1342-1347.
[14] SONG Yiquan DU Cuiwei ZHANG Xin LI Xiaogang. INFLUENCE OF Cl$^{-}$ CONCENTRATION ON CREVICE CORROSION OF X70 PIPELINE STEEL[J]. 金属学报, 2009, 45(9): 1130-1134.
[15] CHEN Xu LI Xiaogang DU Cuiwei LIANG Ping. CREVICE CORROSION BEHAVIOR OF THE STEEL X70 UNDER CATHODIC POLARIZATION[J]. 金属学报, 2008, 44(12): 1431-1438.
No Suggested Reading articles found!