|
|
Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process |
Rui CHEN1, Qingyan XU1( ), Huiting GUO2, Zhiyuan XIA2, Qinfang WU2, Baicheng LIU1 |
1 Key Laboratory for Advanced Materials Processing Technology (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 2 Mingzhi Technology Co. Ltd., Suzhou 215006, China |
|
Cite this article:
Rui CHEN, Qingyan XU, Huiting GUO, Zhiyuan XIA, Qinfang WU, Baicheng LIU. Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process. Acta Metall Sin, 2017, 53(9): 1110-1124.
|
|
Abstract Al-7Si-Mg alloy castings have extensive applications in automotive industries, and the tensile properties of these alloys including yield strength, ultimate tensile strength and elongation are commonly used to judge their mechanical properties. In this work, the modified precipitation kinetics model, yield strength model and strain hardening model have been proposed to predict the tensile properties of Al-7Si-Mg alloys. The precipitation kinetics model can be used to predict the precipitate microstructure parameters including the precipitate density, size, size distribution, volume fraction, and composition and so on in these alloys, combining which with the strength model, their yield strengths can be obtained. The strain hardening model can be applied to simulate the stress-strain curves during tensile process, and the ultimate tensile strengths and elongations can be obtained by combining this model with the experimental data fitted with the expression (σUTS-σY)=mσY+n+f (Tss). First, the evolution of precipitate microstructure parameters and yield strengths as a function of ageing time were simulated, and then their comparisons with the experimental results were performed. The possible reasons resulting in the deviations between simulated and experimental yield strengths were analyzed. The stress-strain curves during tensile process of Al-7Si-0.36Mg alloy were simulated using strain hardening model, and the influences of ageing treatment and as-cast microstructure refining scale on the parameters of dislocation storage rate, dynamic recovery rate and the stress-strain curves were analyzed. Then, the ultimate tensile strengths and elongations of Al-7Si-0.4Mg alloy aged at different temperatures were predicted which are in better agreement with the experimental results, and the influence of secondary dendrite arm spacing on tensile properties was also analyzed. Finally, the limitation of present model and the factors influencing the prediction precision of tensile properties were outlined.
|
Received: 05 December 2016
|
|
Fund: Supported by National Basic Research Program of China (No.2011CB706801) and National Natural Science Foundation of China (Nos.51374137 and 51171089) |
[1] | Y?ld?r?m M, ?zyürek D.The effects of Mg amount on the microstructure and mechanical properties of Al-Si-Mg alloys[J]. Mater. Des., 2013, 51: 767 | [2] | Chen R, Shi Y F, Xu Q Y, et al.Effect of cooling rate on the solidification parameters and microstructure of Al-7Si-0.3Mg-0.15Fe alloy[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1645 | [3] | Ceschini L, Morri A, Morri A, et al.Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminium alloy[J]. Mater. Des., 2009, 304: 4525 | [4] | Samuel A M, Samuel F H.A metallographic study of porosity and fracture behavior in relation to the tensile properties in 319.2 end chill castings[J]. Metall. Mater. Trans., 1995, 26A: 2359 | [5] | Shivkumar S, Ricci S, Keller C, et al.Effect of solution treatment parameters on tensile properties of cast aluminum alloys[J]. J. Heat. Treating, 1990, 8: 63 | [6] | Myhr O R, Grong ?.Modelling of non-isothermal transformations in alloys containing a particle distribution[J]. Acta Mater., 2000, 48: 1605 | [7] | Myhr O R, Grong ?, Andersen S J.Modelling of the age hardening behaviour of Al-Mg-Si alloys[J]. Acta Mater., 2001, 49: 65 | [8] | Bahrami A, Miroux A, Sietsma J.An age-hardening model for Al-Mg-Si alloys considering needle-shaped precipitates[J]. Metall. Mater. Trans., 2012, 43A: 4445 | [9] | Hollomon J H.Tensile deformation[J]. Trans. Metall. Soc. AIME, 1945, 162: 269 | [10] | Ludwigson D C.Modified stress-strain relation for FCC metals and alloys[J]. Mech. Transact., 1971, 2: 2825 | [11] | Voce E.The relationship between stress and strain for homogeneous deformation[J]. J. Inst. Met., 1948, 74: 537 | [12] | Cheng L M, Poole W J, Embury J D, et al.The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030[J]. Metall. Mater. Trans., 2003, 34A: 2473 | [13] | Myth O R, Grong ?, Pedersen K O.A combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys[J]. Metall. Mater. Trans., 2010, 41A: 2276 | [14] | Bahrami A, Miroux A, Sietsma J.Modeling of strain hardening in the aluminum alloy AA6061[J]. Metall. Mater. Trans., 2013, 44A: 2409 | [15] | Zhao Q L, Holmedal B.Modelling work hardening of aluminium alloys containing dispersoids[J]. Philos. Mag., 2013, 93: 3142 | [16] | Fribourg G, Bréchet Y, Deschamps A, et al.Micorstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminum alloy[J]. Acta Mater., 2011, 59: 3621 | [17] | Bardel D, Perez M, Nelias D, et al.Cyclic behaviour of a 6061 aluminium alloy: Coupling precipitation and elastoplastic modeling[J]. Acta Mater., 2015, 83: 256 | [18] | Drouzy M, Jacob S, Richard M.Interpretation of tensile results by means of quality index and probable yield strength[J]. Int. J. Cast Met. Res., 1980, 5: 43 | [19] | Tiryakio?lu M, Staley J T, Campbell J.Evaluating structural integrity of cast Al-7Si-Mg alloys via work hardening characteristics II. A new quality index[J]. Mater. Sci. Eng., 2004, A368: 231 | [20] | Mondal C, Singh A K, Mukhopadhyay A K, et al.Tensile flow and work hardening behavior of hot cross-rolled AA701 aluminum alloy sheets[J]. Mater. Sci. Eng., 2013, A577: 87 | [21] | Chen R, Xu Q Y, Liu B C.Modelling investigation of precipitation kinetics and strengthening for needle/rod-shaped precipitates in Al-Mg-Si alloys[J]. Acta Metall. Sinc., 2016, 52: 987(陈瑞, 许庆彦, 柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究[J]. 金属学报, 2016, 52: 987) | [22] | Du Q, Poole W J, Wells M A.A mathematical model coupled to CALPHAD to predict precipitation kinetics for multicomponent aluminum alloys[J]. Acta Mater., 2012, 60: 3830 | [23] | Chen Q, Jeppsson J, ?gren J.Analytical treatment of diffusion during precipitate growth in multicomponent systems[J]. Acta Mater., 2008, 56: 1890 | [24] | Bardel D, Perez M, Nelias D, et al.Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy[J]. Acta Mater., 2014, 62: 129 | [25] | Ardell A J.Precipitation hardening[J]. Metall. Trans., 1985, 16A: 2131 | [26] | Zhao Q L, Holmedal B.Modelling work hardening of aluminium alloys containing dispersoids[J]. Philos. Mag., 2013, 93: 3142 | [27] | Callister W D, David G R.Fundamentals of Materials Science and Engineering: An integrated approach[M]. 4th Ed., New York: John Wiley & Sons Inc, 2012: 1 | [28] | Proudhon H, Poole W J, Wang X, et al.The role of internal stresses on the plastic deformation of the Al-Mg-Si-Cu alloy AA6111[J]. Philos. Mag., 2008, 88: 621 | [29] | Simar A, Bréchet Y, de Meester B, et al. Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6[J]. Acta Mater., 2007, 55: 6133 | [30] | Sinclair C W, Poole W J, Bréchet Y.A model for the grain size dependent work hardening of copper[J]. Scr. Mater., 2006, 55: 739 | [31] | Zolotorevsky N Y, Solonin A N, Churyumov A Yu, et al.Study of work hardening of quenched and naturally aged Al-Mg and Al-Cu alloys[J]. Mater. Sci. Eng., 2009, A502: 111 | [32] | Chen R, Xu Q Y, Wu Q F, et al.Nucleation model and dendrite growth simulation in solidification process of Al-7Si-Mg alloy[J]. Acta Metall. Sinc., 2015, 51: 733(陈瑞, 许庆彦, 吴勤芳等. Al-7Si-Mg合金凝固过程形核模型建立及枝晶生长过程数值模拟[J]. 金属学报, 2015, 51: 733) | [33] | Liu F, Yu F X, Zhao D Z, et al.Transmission electron microscopy study of precipitates in an artificially aged Al-12.7Si-0.7Mg alloy[J]. Mater. Charact., 2015, 107: 211 | [34] | Liu G, Zhang G J, Ding X D, et al.Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc-or rod/needle-shaped precipitates[J]. Mater. Sci. Eng., 2003, A344: 113 | [35] | Chomsaeng N, Haruta M, Chairuangsri T, et al.HRTEM and ADF-STEM of precipitates at peak-ageing in cast A356 aluminium alloy[J]. J. Alloys Compd., 2010, 496: 478 | [36] | Son S K, Matsumura S, Fukui K, et al.The compositions of metastable phase precipitates observed at peak hardness condition in an Al-Mg-Si alloy[J]. J. Alloys Compd., 2011, 509: 241 | [37] | Wang X, Embury J D, Poole W J, et al.Precipitation strengthening of the aluminum alloy AA6111[J]. Metall. Mater. Trans., 2003, 34A: 2913 | [38] | Sj?lander E, Seifeddine S, Svensson I L.Modelling yield strength of heat treated Al-Si-Mg casting alloys[J]. Int. J. Cast Metal. Res., 2011, 24: 338 | [39] | Brown L M, Stobbs W M.The work-hardening of cooper-silica[J]. Philos. Mag., 1971, 23: 1185 | [40] | Andersen S J, Marioara C D, Fr?seth A, et al.Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al-Mg-Si alloy system and its relation to the β' and β" phases[J]. Mater. Sci. Eng., 2005, A390: 127 | [41] | Ceschini L, Morri A, Toschi S, et al.Microstructural and mechanical properties characterization of heat treated and overaged cast A354 alloy with various SDAS at room and elevated temperature[J]. Mater. Sci. Eng., 2015, A648: 340 | [42] | Haghdadi N, Zarei-Hanzaki A, Roostaei Ali A, et al.Evaluating the mechanical properties of a thermomechanically processed unmodified A356 Al alloy employing shear punch testing method[J]. Mater. Des., 2013, 43: 419 | [43] | Maisonnette D, Suery M, Nelias D, et al.Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy[J]. Mater. Sci. Eng., 2011, A528: 2718 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|