Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (9): 1110-1124    DOI: 10.11900/0412.1961.2016.00547
Orginal Article Current Issue | Archive | Adv Search |
Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process
Rui CHEN1, Qingyan XU1(), Huiting GUO2, Zhiyuan XIA2, Qinfang WU2, Baicheng LIU1
1 Key Laboratory for Advanced Materials Processing Technology (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2 Mingzhi Technology Co. Ltd., Suzhou 215006, China
Cite this article: 

Rui CHEN, Qingyan XU, Huiting GUO, Zhiyuan XIA, Qinfang WU, Baicheng LIU. Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process. Acta Metall Sin, 2017, 53(9): 1110-1124.

Download:  HTML  PDF(3563KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al-7Si-Mg alloy castings have extensive applications in automotive industries, and the tensile properties of these alloys including yield strength, ultimate tensile strength and elongation are commonly used to judge their mechanical properties. In this work, the modified precipitation kinetics model, yield strength model and strain hardening model have been proposed to predict the tensile properties of Al-7Si-Mg alloys. The precipitation kinetics model can be used to predict the precipitate microstructure parameters including the precipitate density, size, size distribution, volume fraction, and composition and so on in these alloys, combining which with the strength model, their yield strengths can be obtained. The strain hardening model can be applied to simulate the stress-strain curves during tensile process, and the ultimate tensile strengths and elongations can be obtained by combining this model with the experimental data fitted with the expression (σUTSY)=Y+n+f (Tss). First, the evolution of precipitate microstructure parameters and yield strengths as a function of ageing time were simulated, and then their comparisons with the experimental results were performed. The possible reasons resulting in the deviations between simulated and experimental yield strengths were analyzed. The stress-strain curves during tensile process of Al-7Si-0.36Mg alloy were simulated using strain hardening model, and the influences of ageing treatment and as-cast microstructure refining scale on the parameters of dislocation storage rate, dynamic recovery rate and the stress-strain curves were analyzed. Then, the ultimate tensile strengths and elongations of Al-7Si-0.4Mg alloy aged at different temperatures were predicted which are in better agreement with the experimental results, and the influence of secondary dendrite arm spacing on tensile properties was also analyzed. Finally, the limitation of present model and the factors influencing the prediction precision of tensile properties were outlined.

Key words:  Al-7Si-Mg alloy      tensile property      strain hardening      precipitate      ageing treatment      modeling     
Received:  05 December 2016     
ZTFLH:  TG146.2  
Fund: Supported by National Basic Research Program of China (No.2011CB706801) and National Natural Science Foundation of China (Nos.51374137 and 51171089)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00547     OR     https://www.ams.org.cn/EN/Y2017/V53/I9/1110

Fig.1  Schematics of the engineering stress-engineering strain curve (σ-ε) during tensile process
(a) and the change of strain hardening rate (θ) with stress (b) of Al-7Si-Mg aluminum alloy (σY and σUTS—yield strength and ultimate tensile strength, respectively; e—elongation; εY—engineering strain corresponding to the yield strength; θ0—initial strain hardening rate)
Fig.2  Curve of Young's modulus of Al-7Si-Mg alloy vs yield strength (E—Young's modulus, R2—standard deviation)
Fig.3  Dimensions of flat shape (a) and cylindrical shape (b) tensile samples (unit: mm)
Sample shape ST temperature ST time Ageing Ageing
h temperature / ℃ time / h
Cylindrical 550 2 200 0~36
Cylindrical 550 2 180 0~72
Cylindrical 550 2 160 0~120
Cylindrical 535 2 180 0~72
Plat 550 2 180 0~72
Table 1  Parameters of solution treatment and artificial ageing for the tensile samples
Fig.4  TEM (a~c) and HRTEM (d~f) images of Al-7Si-0.4Mg alloy artificially aged at 180 ℃ for 20 min (a, d), 4 h (b, e) and 120 h (c, f) (Insets in Figs.4d and e show the cross section of needle-shaped precipitates)
Fig.5  Tensile properties of Al-7Si-0.4Mg alloy as a function of ageing time at 160 and 180 ℃
Fig.6  Curves of (σUTS-σY) vs σY for Al-7Si-0.36Mg cylindrical samples at different heat treatments (a) and with different secondary dendrite arm spacings (d) aged at 180 ℃ (b)
Ageing temperature / ℃ Ageing time / h Mean radius / nm Mean aspect ratio
160 8 1.46±0.167 7.4±2.12
160 24 1.76±0.188 7.8±2.31
160 120 1.91±0.290 8.0±3.08
180 0.33 1.07±0.085 -
180 1 1.40±0.240 7.1±2.20
180 4 1.75±0.271 7.5±2.88
180 24 2.01±0.320 7.8±2.36
180 120 2.28±0.274 6.8±1.98
200 2 1.89±0.274 8.2±3.16
Table 2  Measured mean radii and aspect ratios of β" precipitates of Al-7Si-0.4Mg alloy after different ageing treatments
Parameter Unit Value
Atomic fraction of Mg in β" precipitate xMgβ % 5/11[36]
Atomic fraction of Si in β" precipitate xSiβ % 6/11[36]
Aspect ratio of precipitate ? - 7
Interface energy γ Jm-2 0.35[38]
Shear modulus of matrix G Nm-2 2.7×1010[7]
Magnitude of the burgers vector b m 2.84×10-10[7]
Taylor factor M - 3.1[7]
Precipitate Young's modulus Ep GPa 59[16]
Ratio of volume fraction of matrix and β" precipitate ω - 1
Factor for adjusting the effective diffusion distance ξ - 1
Constant depends on the shape and nature of dislocation δ - 0.25[39]
Precipitate shearing/bypassing transition radius rpc nm 2.4
Precipitate coherency/incoherency transition radius rcl nm 4.0
Maximum number of loops around a precipitate np* - 9[16]
Parameter associated with the rate of dislocation storage k1 m-1 Varying
Parameter associated with the rate of dynamic recovery k20 - Varying
Parameter associated with dislocation loop k2p - 600
Table 3  Parameters used for the prediction of tensile properties and stress-strain curves in Al-7Si-Mg alloys
Fig.7  Densities (a) and mean radii (b) of β" precipitates as a function of ageing time for Al-7Si-0.4Mg alloy aged at 160, 180 and 200 ℃
Fig.8  Comparisons of predicted and measured yield strengths for Al-7Si-0.4Mg alloy aged at 160, 180 and 200 ℃
Ageing time / h xMgα / % k1 / m-1 k20 θ0 / MPa%-1 K
0 0.400 1.65 13 14.6 0.175
0.5 0.363 2.10 14 20.2 0.185
1 0.268 2.65 20 25.8 0.273
2 0.083 2.65 26 26.1 0.359
4 0.008 2.65 28 25.5 0.377
8 0.007 2.65 39 23.8 0.496
12 0.006 2.65 42 25.1 0.575
24 0.005 2.65 42 23.7 0.564
Table 4  Evolutions of xMgα, k1, k20, θ0 and K with ageing time at 180 ℃
Fig.9  Experimental and simulated stress-strain curves of Al-7Si-0.36Mg alloy (d=24.9 μm) after aged at 180 ℃ for different times
Fig.10  Influences of kinematic strain hardening (Δσkin_e) caused by grain boundary and eutectic silicon particles on the stress-strain curves (a) and strain hardening rate (b) in Al-7Si-0.36Mg alloy
d / μm k1 / m-1 k20 D / μm
53.2 2.38 26 5.8
43.0 2.46 26 5.5
36.7 2.55 26 5.0
24.9 2.65 26 5.0
Table 5  Parameters k1, k20 and D applied for calculating the stress-train curves of samples with different d values
Fig.11  Influences of d on the stress-strain curves (a) and strain hardening rate (b) in Al-7Si-0.36Mg alloy
Fig.12  Predicted engineering stress-engineering strain curves (a, b) of tensile samples of Al-7Si-0.4Mg alloy aged at 160 ℃ (a) and 180 ℃ (b) for 0~36 h, and the comparisons of predicted and experimental ultimate tensile strengths (c) and elongations (d)
Fig.13  Predicted yield strength, ultimate tensile strength (a) and elongation (b) of the tensile samples in Al-7Si-0.4Mg alloy with different secondary dendrite arm spacings after aged at 180 ℃ for 0~24 h (Solid lines and dash lines in Fig.13a represent the yield strength and ultimate tensile strength, respectively)
[1] Y?ld?r?m M, ?zyürek D.The effects of Mg amount on the microstructure and mechanical properties of Al-Si-Mg alloys[J]. Mater. Des., 2013, 51: 767
[2] Chen R, Shi Y F, Xu Q Y, et al.Effect of cooling rate on the solidification parameters and microstructure of Al-7Si-0.3Mg-0.15Fe alloy[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1645
[3] Ceschini L, Morri A, Morri A, et al.Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminium alloy[J]. Mater. Des., 2009, 304: 4525
[4] Samuel A M, Samuel F H.A metallographic study of porosity and fracture behavior in relation to the tensile properties in 319.2 end chill castings[J]. Metall. Mater. Trans., 1995, 26A: 2359
[5] Shivkumar S, Ricci S, Keller C, et al.Effect of solution treatment parameters on tensile properties of cast aluminum alloys[J]. J. Heat. Treating, 1990, 8: 63
[6] Myhr O R, Grong ?.Modelling of non-isothermal transformations in alloys containing a particle distribution[J]. Acta Mater., 2000, 48: 1605
[7] Myhr O R, Grong ?, Andersen S J.Modelling of the age hardening behaviour of Al-Mg-Si alloys[J]. Acta Mater., 2001, 49: 65
[8] Bahrami A, Miroux A, Sietsma J.An age-hardening model for Al-Mg-Si alloys considering needle-shaped precipitates[J]. Metall. Mater. Trans., 2012, 43A: 4445
[9] Hollomon J H.Tensile deformation[J]. Trans. Metall. Soc. AIME, 1945, 162: 269
[10] Ludwigson D C.Modified stress-strain relation for FCC metals and alloys[J]. Mech. Transact., 1971, 2: 2825
[11] Voce E.The relationship between stress and strain for homogeneous deformation[J]. J. Inst. Met., 1948, 74: 537
[12] Cheng L M, Poole W J, Embury J D, et al.The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030[J]. Metall. Mater. Trans., 2003, 34A: 2473
[13] Myth O R, Grong ?, Pedersen K O.A combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys[J]. Metall. Mater. Trans., 2010, 41A: 2276
[14] Bahrami A, Miroux A, Sietsma J.Modeling of strain hardening in the aluminum alloy AA6061[J]. Metall. Mater. Trans., 2013, 44A: 2409
[15] Zhao Q L, Holmedal B.Modelling work hardening of aluminium alloys containing dispersoids[J]. Philos. Mag., 2013, 93: 3142
[16] Fribourg G, Bréchet Y, Deschamps A, et al.Micorstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminum alloy[J]. Acta Mater., 2011, 59: 3621
[17] Bardel D, Perez M, Nelias D, et al.Cyclic behaviour of a 6061 aluminium alloy: Coupling precipitation and elastoplastic modeling[J]. Acta Mater., 2015, 83: 256
[18] Drouzy M, Jacob S, Richard M.Interpretation of tensile results by means of quality index and probable yield strength[J]. Int. J. Cast Met. Res., 1980, 5: 43
[19] Tiryakio?lu M, Staley J T, Campbell J.Evaluating structural integrity of cast Al-7Si-Mg alloys via work hardening characteristics II. A new quality index[J]. Mater. Sci. Eng., 2004, A368: 231
[20] Mondal C, Singh A K, Mukhopadhyay A K, et al.Tensile flow and work hardening behavior of hot cross-rolled AA701 aluminum alloy sheets[J]. Mater. Sci. Eng., 2013, A577: 87
[21] Chen R, Xu Q Y, Liu B C.Modelling investigation of precipitation kinetics and strengthening for needle/rod-shaped precipitates in Al-Mg-Si alloys[J]. Acta Metall. Sinc., 2016, 52: 987(陈瑞, 许庆彦, 柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究[J]. 金属学报, 2016, 52: 987)
[22] Du Q, Poole W J, Wells M A.A mathematical model coupled to CALPHAD to predict precipitation kinetics for multicomponent aluminum alloys[J]. Acta Mater., 2012, 60: 3830
[23] Chen Q, Jeppsson J, ?gren J.Analytical treatment of diffusion during precipitate growth in multicomponent systems[J]. Acta Mater., 2008, 56: 1890
[24] Bardel D, Perez M, Nelias D, et al.Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy[J]. Acta Mater., 2014, 62: 129
[25] Ardell A J.Precipitation hardening[J]. Metall. Trans., 1985, 16A: 2131
[26] Zhao Q L, Holmedal B.Modelling work hardening of aluminium alloys containing dispersoids[J]. Philos. Mag., 2013, 93: 3142
[27] Callister W D, David G R.Fundamentals of Materials Science and Engineering: An integrated approach[M]. 4th Ed., New York: John Wiley & Sons Inc, 2012: 1
[28] Proudhon H, Poole W J, Wang X, et al.The role of internal stresses on the plastic deformation of the Al-Mg-Si-Cu alloy AA6111[J]. Philos. Mag., 2008, 88: 621
[29] Simar A, Bréchet Y, de Meester B, et al. Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6[J]. Acta Mater., 2007, 55: 6133
[30] Sinclair C W, Poole W J, Bréchet Y.A model for the grain size dependent work hardening of copper[J]. Scr. Mater., 2006, 55: 739
[31] Zolotorevsky N Y, Solonin A N, Churyumov A Yu, et al.Study of work hardening of quenched and naturally aged Al-Mg and Al-Cu alloys[J]. Mater. Sci. Eng., 2009, A502: 111
[32] Chen R, Xu Q Y, Wu Q F, et al.Nucleation model and dendrite growth simulation in solidification process of Al-7Si-Mg alloy[J]. Acta Metall. Sinc., 2015, 51: 733(陈瑞, 许庆彦, 吴勤芳等. Al-7Si-Mg合金凝固过程形核模型建立及枝晶生长过程数值模拟[J]. 金属学报, 2015, 51: 733)
[33] Liu F, Yu F X, Zhao D Z, et al.Transmission electron microscopy study of precipitates in an artificially aged Al-12.7Si-0.7Mg alloy[J]. Mater. Charact., 2015, 107: 211
[34] Liu G, Zhang G J, Ding X D, et al.Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc-or rod/needle-shaped precipitates[J]. Mater. Sci. Eng., 2003, A344: 113
[35] Chomsaeng N, Haruta M, Chairuangsri T, et al.HRTEM and ADF-STEM of precipitates at peak-ageing in cast A356 aluminium alloy[J]. J. Alloys Compd., 2010, 496: 478
[36] Son S K, Matsumura S, Fukui K, et al.The compositions of metastable phase precipitates observed at peak hardness condition in an Al-Mg-Si alloy[J]. J. Alloys Compd., 2011, 509: 241
[37] Wang X, Embury J D, Poole W J, et al.Precipitation strengthening of the aluminum alloy AA6111[J]. Metall. Mater. Trans., 2003, 34A: 2913
[38] Sj?lander E, Seifeddine S, Svensson I L.Modelling yield strength of heat treated Al-Si-Mg casting alloys[J]. Int. J. Cast Metal. Res., 2011, 24: 338
[39] Brown L M, Stobbs W M.The work-hardening of cooper-silica[J]. Philos. Mag., 1971, 23: 1185
[40] Andersen S J, Marioara C D, Fr?seth A, et al.Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al-Mg-Si alloy system and its relation to the β' and β" phases[J]. Mater. Sci. Eng., 2005, A390: 127
[41] Ceschini L, Morri A, Toschi S, et al.Microstructural and mechanical properties characterization of heat treated and overaged cast A354 alloy with various SDAS at room and elevated temperature[J]. Mater. Sci. Eng., 2015, A648: 340
[42] Haghdadi N, Zarei-Hanzaki A, Roostaei Ali A, et al.Evaluating the mechanical properties of a thermomechanically processed unmodified A356 Al alloy employing shear punch testing method[J]. Mater. Des., 2013, 43: 419
[43] Maisonnette D, Suery M, Nelias D, et al.Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy[J]. Mater. Sci. Eng., 2011, A528: 2718
[1] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[2] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[3] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[4] RUI Xiang, LI Yanfen, ZHANG Jiarong, WANG Qitao, YAN Wei, SHAN Yiyin. Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. 金属学报, 2023, 59(12): 1590-1602.
[5] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[6] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[7] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[8] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[9] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[10] CHEN Huabin, CHEN Shanben. Key Information Perception and Control Strategy of Intellignet Welding Under Complex Scene[J]. 金属学报, 2022, 58(4): 541-550.
[11] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[12] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[13] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[14] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[15] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
No Suggested Reading articles found!