1 Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China 2 Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
Cite this article:
Yufeng ZHENG,Yuanhao WU. Revolutionizing Metallic Biomaterials. Acta Metall Sin, 2017, 53(3): 257-297.
Entering 21st century, the metallic biomaterials are revolutionizing. New kinds of metallic biomaterials represented by biodegradable metals, nacocrystalline metals and alloys, and bulk metallic glasses, had been explored as implantable biomaterials, and correspondingly the nature of metallic biomaterials are shifting from the bio-inert (with stainless steel, Co-based alloys and Ti alloys) to bio-active and multi-biofunctional (anti-bacterial, anti-proliferation, anti-cancer, etc.). The newly-emerging 3D printing technology and thin film technology had been applied to the advancing manufacture and intelligence of the medical devices made of metallic biomaterials. In this paper, the current research status of the revolutionizing metallic biomaterials had been reviewed, and the future research and development tendencies for newly-developed metallic biomaterials towards bio-functionalization, composite and intelligence are also proposed.
Fund: Supported by National Key Research and Development Program of China (Nos.2016YFC1102402 and 2016YFC1000903), National Natural Science Foundation of China (No.51431002) and NSFC/RGC Joint Research Scheme (Nos.51361165101 and 5161101031)
Fig.1 Schematic diagram of the biocorrosion at biodegradable magnesium/medium interface[2] (a) absorption of organic moleculars on the alloys surface (b) formation of Mg(OH)2 during dissolution of the alloys (c) chloride adsorption causes the breakdown of the Mg(OH)2 protective layer and leads to pitting corrosion (d) formation of corrosion particles and tissues
Fig.2 Considerations of element selection for developing biodegradable Mg-based alloys[12]
Alloy
Cell viability of various cell lines
L929
NIH3T3
MC3T3-E1
ECV304
VSMC
MG63
HUVACs
SaOS2
As-cast Mg[47]
65
89
88
76
92
As-cast Mg-1Al[47]
98
118
110
87
105
As-cast Mg-1Ag[47]
77
90
94
88
99
As-cast Mg-1In[47]
95
100
91
82
80
As-cast Mg-1Mn[47]
70
62
62
63
71
As-cast Mg-1Si[47]
88
102
119
80
92
As-cast Mg-1Sn[47]
94
109
118
88
106
As-cast Mg-1Y[47]
91
98
101
68
88
As-cast Mg-1Zn[47]
110
111
111
100
109
As-cast Mg-1Zr[47]
80
81
101
72
89
As-extruded Mg-1Ca[20]
160
RS45Mg-3Ca[61]
105
As-cast Mg-1Ca-0.5Sr[62]
98
As-extruded Mg-6Zn[26]
99
As-cast Mg-5.45Zn-0.45Zr[63]
54
76
As-extruded Mg-5.45Zn-0.45Zr[63]
60
78
As-rolled Mg-1Sr[37]
84
As-rolled Mg-2Sr[37]
80
As-rolled Mg-3Sr[37]
69
As-rolled Mg-4Sr[37]
51
As-cast Mg-0.5Sr[38]
111
As-cast Mg-5Zr[64]
112
As-cast Mg-1Zr-1Sr[64]
104
As-cast Mg-2Zr-5Sr[64]
83
As-cast Mg-1.38Si-0.5Sr-0.6Ca[65]
100*
As-cast Mg-1.38Si-1Sr-0.6Ca[65]
94.6*
As-cast Mg-1.38Si-1Sr-1Ca[65]
81.2*
Table 1 Cell viabilities of different Mg alloys[20,26,37,38,47,61~65]
Material
Shape / mm
Implant site
Implant duration / week
New bone formation (Yes/No)
Degradation rate/ remaining volume
As-cast AD91D[66]
?1.5×20.0
Pig femur
18
Yes
3.516×10-4 mma-1
As-cast LAE442[66]
?1.5×20.0
Pig femur
18
Yes
1.205×10-4 mma-1
PCL coated AZ91[67]
?3×6
Rabbit trochanter
8
Yes
99.95% volume
As-cast AZ91[67]
?3×6
Rabbit
8
Yes
99.67% volume
As-rolled Mg-2Sr[37]
?0.7×5
Mice femur
4
Yes
1.01 mma-1
MgF2 coated LAE442[68]
?3×8
Rabbit femur
12
Yes
0.13 mma-1
Extruded LAE442[68]
?3×8
Rabbit femur
12
Yes
0.31 mma-1
Extruded+MgF2 coated Mg0.8Ca[69]
?2.5×25
Rabbit marrow cavity
24
Yes
74.67% 91.23% in musle
Extruded Mg-0.8Ca[18]
Screw
Rabbit lateral cortex
8
Yes
98.63% incortex
91.18% in marrow cavity
Extruded Mg-1Ca[20]
Screw
Rabbit femur shaft
12
Yes
1.27 mma-1
Extruded Mg-6Zn[26]
?4.5×10
Rabbit femur
14
Yes
2.32 mma-1
As-extruded Mg-1.2Mn-1.0Zn[70]
?4×1.5
Rat femur
18
Yes
46%
As-extruded+Ca-P coating Mg-1.2Mn-1.0Zn[71]
?2.8×10
Rabbit femur
4
Yes
-
As-cast Mg-2Zn-0.2Ca
?3.5×9
Rabbit femur
50
Yes
2.15 mma-1
As-cast+MAO coated Mg-2Zn-0.2Ca[72]
?3.5×9
Rabbit femur
50
Yes
1.24 mma-1
As-cast Mg-5Zr[64]
?2.4×5
Rabbit femur
12
Yes
-
As-cast Mg-1Zr-2Sr[64]
?2.4×5
Rabbit femur
12
Yes
-
As-cast Mg-2Zr-5Sr[64]
?2.4×5
Rabbit femur
12
Yes
-
As-cast Mg-Y-Nd-HRE[73]
?1.6×7
Rat femur
24
Yes
-
Rapidly solidified Mg-5Bi-1Ca[74]
?3×5
Rabbit femur
4
Yes
1.85 mma-1
Table 2 In vivo evaluations of biocompatibility and corrosion behavior of Mg alloys[18,20,26,37,64,66~74]
Material
Coating
Corrosion rate in vitro
Biocompatibility
mma-1
mLcm-2d-1
As-cast Mg[104]
Alkali-heat treatment
No inhibitory effects on marrow cells growth. No signs of cellular lysis
As-cast Mg[105]
Beta-TCP coating
MG63 viability about 80%
As-cast Mg[106]
Heat-self-assembled monolayer
No inhibitory effects on marrow cells growth; hemolysis is 0
As-extruded Mg-0.8Ca[14]
MgF2 coating
After 10 d smooth muscle and endothelial cells around the alloys were still alive
As-cast Mg-1Ca[87]
Na2HPO4 alkaliheat treatment
2.08a
0.7a
No obvious toxicity to L929 cells
As-cast Mg-1Ca[87]
Na2CO3 alkali-heat treatment
2.27a
0.86a
No obvious toxicity to L929 cells
As-cast Mg-1Ca[87]
NaHCO3 alkali-heat treatment
2.29a
0.48a
No obvious toxicity to L929 cells
As-cast Mg-1Ca[107]
Electrodeposition
0.17b
As-extruded Mg-1Ca[108]
Electrodeposition
0.14b
As-extruded Mg-1Ca[98]
Chitosan coating
0.312~0.686a
As-extruded Mg-6Zn[91,109]
Electrodeposition
(1.9×10-3)c
About 0.07a
As-extruded Mg-6Zn[91,109]
HA electrodeposition
About 0.06a
As-extruded Mg-6Zn[91,109]
FHA electrodeposition
About 0.02a
Present more stimulation effects to hBMSCs proliferation and differentiation; can up-regulate main osteogenic genes after 21 d of culture
As-extruded Mg-6Zn[101]
PLGA coating
0.68~1.18a
Significantly enhanced ability of MC3T3 cell attachment
As-extruded Mg-Mn-Zn[110]
DCPD
0.09~0.30c
Better surface cytocompatibility than naked Mg-Mn-Zn alloy and pure Ti
As-cast Mg-Zn-Ca[93]
Ca-deficient HA coating
0.56a
As-cast AZ31[111]
Ca-P coating
Hemolysis is 2.5%
As-cast AZ31[112]
CeO2/MgO coating
0.03c
Good anti-clotting property equivalent to that of 316L stainless steel
As-cast AZ31[113]
MgO anodic oxidation
Does not affect the proliferation and the bone formation of osteoblast; hemolysisis 4.3%
As-extruded AZ31[108]
DCPD
0.06b
As-extruded AZ31[114]
MgF2
2.26b
0.0011b
As-cast AZ91[90,114~116]
MAO coating
(7.1×10-4~3.4×10-3)a
As-cast AZ91[117]
Laser surface melting
0.17a
As-cast AZ91[118]
Hydrogenated amorphous silicon
0.08a
hFOB1.19 cells attach well on the coating and proliferate normally
As-extruded WE43[119]
Chitosan coating
0.05b
As-extruded LAE442[68]
MgF2 coating
0.77b
Table 3 Influences of surface modification methods on the corrosion behavior and biocompatibility of Mg alloys[14,68,87,90,91,93,98,101,104~119]
Fig.3 Comparison of the coating effectiveness on corrosion resistance of Mg alloys substrates[2] (PEI: polyethyleneimine, PSS: poly (styrene sulfonate), 8HQ: 8-hydroxyquinoline, PCL: polycaprolactone, CS: chitosan, PLLA: poly L-lactic acid)
Fig.4 Average corrosion rates of pure Zn wires after implanted in the SD rats[120]
Alloy
Yield strength MPa
Ultimate strength MPa
Elongation %
As-cast Zn[122]
20
0.3
As-rolled Zn[124]
20.99
49.55
5.72
As-cast Zn-1Mg[122]
108
153
1.5
As-cast Zn-1.5Mg[122]
147
0.4
As-cast Zn-3Mg[122]
28
0.2
As-rolled Zn-1Mg[124]
190.61
236.9
11.95
As-rolled Zn-1Ca[124]
205.52
253.3
12.76
As-rolled Mg-1Sr[124]
188.42
228.91
19.69
As-rolled Zn-1Mg-0.1Mn[125]
195.02
299.04
26.07
As-cast Zn-1Mg-1Ca*[126]
80
130
1
As-cast Zn-1Mg-1Sr*[126]
88
138
1.2
As-cast Zn-1Ca-1Sr*[126]
87
140
1.1
As-rolled Zn-1Mg-1Ca*[126]
138
198
8.8
As-rolled Zn-1Mg-1Sr*[126]
140
201
9.9
As-rolled Zn-1Ca-1Sr*[126]
145
205
9
As-extruded Zn-1Mg-1Ca*[126]
205
258
5.4
As-extruded Zn-1Mg-1Sr*[126]
203
256
7.5
As-extruded Zn-1Ca-1Sr*[126]
212
250
6.8
Table 4 Summary of the mechanical properties of pure Zn and Zn alloys[122,124~126]
Alloy
Yield strength MPa
Ultimate strength MPa
Elongation %
Magnetic susceptibility μm3kg-1
Corrosion rate mma-1
As-cast pure iron[128]
-
-
-
-
0.008
Annealed pure iron[128]
140±10
205±6
25.5±3
-
0.16±0.04
Electroformed pure iron[128]
360±9
423±12
8.3±2
-
0.85±0.05
ECAP pure iron[129]
-
470±29
-
-
0.02
PM pure iron[130]
-
-
-
-
5.02
SPS pure iron[131]
-
-
-
-
0.016
FeN[131]
561.4
614.4
-
-
0.225
Fe-10Mn (forged)[132]
650
1300
14
-
7.17
Fe-10Mn-1Pd (forged)[133]
850
1450
11
-
25.10
Fe-30Mn (as-cast)[134]
124.5
366.7
55.7
-
0.12
Fe-30Mn-6Si (as-cast)[134]
177.8
433.3
16.6
-
0.29
Fe-30Mn (forged)[135]
169
569
60
0.16
0.12
Fe-30Mn-1C (forged)[135]
373
1010
88
0.03
0.2
Fe-3Co (as-rolled)[136]
460
648
5.5
-
0.142
Fe-3W (as-rolled)[136]
465
712
6.2
-
0.148
Fe-3C (as-rolled)[136]
440
600
7.4
-
0.187
Fe-3S (as-rolled)[136]
440
810
8.3
-
0.145
Fe-20Mn (PM)[137]
420
700
8
0.2
-
Fe-25Mn (PM)[137]
360
720
5
0.2
0.52
Fe-30Mn (PM)[137]
240
520
20
0.2
-
Fe-35Mn (PM)[137]
230
430
30
0.2
0.44
Fe-0.06P (PM)[130]
-
-
-
-
7.75
Fe-0.05B (PM)[130]
-
-
-
-
7.17
Fe-5W (SPS)[130]
-
-
-
-
0.138
Fe-1CNT (SPS)[130]
-
-
-
-
0.117
Fe-5Pd (SPS)[138]
-
-
-
-
0.0724
Fe-5Pt (SPS)[138]
-
-
-
-
0.0983
316L SS[127]
190
490
40
0.5
-
WE43[127]
150
250
4
-
-
Table 5 Mechanical properties of potential alloys for biodegradable stents applications and 316L SS (stainless steel)[127~138]
Fig.5 Weight loss and corrosion rate of pure iron in SBF[142]
Table 9 Summary of the mechanical properties of Fe-based metallic glasses[185,205~209]
BMG
Alloy
Critical size / mm
Ultimate strength / MPa
Young's modulus GPa
Vickers hardness / HV
Ca-based
Ca(57.5-x)Mg(15+x)Zn27.5 (x=0, 2.5, 5)[213]
2.5~4.5
-
36~39
0.9~1.4
Ca52.5Mg17.5Zn30[213]
0.9
44
1.4
Ca52.5Mg22.5Zn25[213]
1.0
43
0.8
Ca50Mg20Zn30[213]
1.2
46
0.7
Ca65Li9.96Mg8.54Zn16.5[214]
5
530
23.4
1.35
Ca48Zn30Mg14Yb8[215]
2
600
31.9
Ca20Mg20Zn20Sr20Yb20[216]
4
370
19.4
Mg-based
Mg65Cu25Gd10[188]
About 800
About 2.5
Mg60Cu29Y10Si1[217]
2.6
About 66
About 4
Mg(80-x)Ca5Zn(15+x) (x=5~20)[218]
1~4
700
47.6~48.2
2.16
Mg(96-x)ZnxCa4 (x=25, 30)[219]
2~5
830~930
Mg67Zn28Ca5[220]
0.1
817
2.16
Mg69Zn27Ca4[221]
1.5
About 550
Mg66Zn30(Ca4-x)Srx (x=0, 0.5, 1, 1.5)[222]
4~6
787~848
48.5~49.4
2.45~2.51
Mg66Zn(30-x)Ca4Agx (x=0, 1, 3)[222]
1~4
780
2.35
Zn-based
Zn38Ca32Mg12Yb18[215]
2
About 640
About 36.6
Zn40Mg11Ca31Yb18[224]
2
663
Sr-based
Sr40Mg20Zn15Yb20Cu5[225]
3
408
20.6
Sr60Mg18Zn22[226]
3
19.7
Sr60Li5Mg15Zn20[226]
3
18.4
Table 10 Summary of the mechanical properties of the biodegrdable metallic glasses[188,213~226]
Fig.8 Structures fabricated via electron beam melting[258] (a) cubes with 40% relative density (60% porous) (b) cubes with relative densities of 8.0%, 5.0% and 3.8% (c) bending specimens with 8 mm and 6 mm cell sizes (7.3% and 11.9% relative density) (d) hip stems with mesh configuration, hole configuration, and solid configuration
Method
Material
Yield strength MPa
Ultimate strength MPa
Elongation %
Reduction of area %
EBM[260]
Ti-6Al-4V ELI
834
920
16
54
EBM[260]
Ti-6Al-4V
938~948
2016~2034
14.8~16.2
39~46
SLM[264]
Ti-6Al-4V ELI
1110
1267
7.28
SLM[265]
Ti-6Al-4V
990
1096
8.1
Forging[266]
Ti-6Al-4V ELI
795
860
>10
>25
Forging[266]
Ti -6Al-4V
860
930
>10
>25
Table 11 Room temperature tensile properties of Ti-6Al-4V fabricated by different methods[260,264~266]
Material
Processing
Hardness HV
Young's modulus GPa
Yield strength MPa
Ultimate strength MPa
Elongation %
CP-Ti[275]
SLM
261±13
106±3
555
757
19.5
CP-Ti[277]
SLM
500
650
17
CP-Ti[278]
Sheet forming
280
345
20
CP-Ti[279]
Full annealed
432
561
14.7
Ti-6Al-4V[264]
SLM
409
109
1110
1267
7.28
Ti-6Al-4V[280,281]
Casting/superplastic forming
346
110
847
976
5.1
Ti-24Nb-4Zr-8Sn[274]
SLM
220±6
53±1
563±38
665±18
13.8±4.1
Ti-24Nb-4Zr-8Sn[282]
Hot rolling
46
700
830
15
Ti-24Nb-4Zr-Sn[283]
Hot forging
55
570
755
13
Table 12 Comparison of Vickers hardness and tensile mechanical properties of different types of titanium alloys processed by SLM and traditional methods[264,274,275,277~283]
Material
Yield strength MPa
Ultimate strength MPa
Elongation%
Reduction of area%
Ti-5Al-5Mo-5V-1Cr-1Fe[292]
1178±20
5±0.5
9.8±1.7
Ti-6.5Al-3.5Mo-1.5Zr-0.3Si(vertical to the deposition direction)[297]
920
1025
8.2
17
Ti-6.5Al-3.5Mo-1.5Zr-0.3Si(along the deposition direction)[297]
840
925
18.8
26
Table 13 Tensile properties of laser direct melting deposition (LDMD) Ti alloy[292,297]
Fig.9 Illustration of the mechanical properties of the metallic materials for biomedical applications[13,20,24~29,37,41,49,62,64,170~176,181~191,195,196,206~209,212~221,214~216] (a) Mg and Mg-based alloys (b) Zn and Zn-based alloys (c) Fe and Fe-based alloys (d) BMGs
Fig.10 Novelcardiovascular stents intergrated with diagnose and therapy functions[335]
[1]
Br?nemar P I, Breine U, Johansso B, et al.Regeneration of bone marrow——A clinical and experimental study following removal of bone marrow by curettage[J]. Acta Anat., 1964, 59: 1
[2]
Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng., 2014, R77: 1
[3]
Witte F.The history of biodegradable magnesium implants: A review[J]. Acta Biomater., 2010, 6: 1680
[4]
Witte F, Kaese V, Haferkamp H, et al.In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26: 3557
[5]
Narayan R J.The next generation of biomaterial development[J]. Philos. Trans. Roy. Soc., 2010, 368A: 1831
Staiger M P, Pietak A M, Huadmai J, et al.Magnesium and its alloys as orthopedic biomaterials: A review[J]. Biomaterials, 2006, 27: 1728
[8]
Erinc M, Sillekens W H, Mannens R G T M, et al. Applicability of existing magnesium alloys as biomedical implant materials [A]. The Materials Society Annual Meeting [C]. San Francisco, CA: Cambridge University Press, 2009: 209
Song G L.Control of biodegradation of biocompatable magnesium alloys[J]. Corros. Sci., 2007, 49: 1696
[11]
Liu M, Uggowitzer P J, Nagasekhar A V, et al.Calculated phase diagrams and the corrosion of die-cast Mg-Al alloys[J]. Corros. Sci., 2009, 51: 602
[12]
Chen Y J, Xu Z G, Smith C, et al.Recent advances on the development of magnesium alloys for biodegradable implants[J]. Acta Biomater., 2014, 10: 4561
[13]
Yin P, Li N F, Lei T, et al.Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys[J]. J. Mater. Sci. Mater. Med., 2013, 24: 1365
[14]
Drynda A, Hassel T, Hoehn R, et al.Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications[J]. J. Biomed. Mater. Res., 2010, 93A: 763
[15]
Zhang E L, Yang L.Microstructure, mechanical properties and bio-corrosion properties of Mg-Zn-Mn-Ca alloy for biomedical application[J]. Mater. Sci. Eng., 2008, A497: 111
[16]
Harandi S E, Idris M H, Jafari H.Effect of forging process on microstructure, mechanical and corrosion properties of biodegradable Mg-1Ca alloy[J]. Mater. Des., 2011, 32: 2596
[17]
Hirai K, Somekawa H, Takigawa Y, et al.Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature[J]. Mater. Sci. Eng., 2005, A403: 276
[18]
Erdmann N, Angrisani N, Reifenrath J, et al.Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: A comparative in vivo study in rabbits[J]. Acta Biomater., 2011, 7: 1421
[19]
Rad H R B, Idris M H, Kadir M R A, et al. Microstructure analysis and corrosion behavior of biodegradable Mg-Ca implant alloys[J]. Mater. Des., 2012, 33: 88
[20]
Li Z J, Gu X N, Lou S Q, et al.The development of binary Mg-Ca alloys for use as biodegradable materials within bone[J]. Biomaterials, 2008, 29: 1329
[21]
Jeong Y S, Kim W J.Enhancement of mechanical properties and corrosion resistance of Mg-Ca alloys through microstructural refinement by indirect extrusion[J]. Corros. Sci., 2014, 82: 392
[22]
Kim W C, Kim J G, Lee J Y, et al.Influence of Ca on the corrosion properties of magnesium for biomaterials[J]. Mater. Lett., 2008, 62: 4146
[23]
Tapiero H, Tew K D.Trace elements in human physiology and pathology: Zinc and metallothioneins[J]. Biomed. Pharmacother., 2003, 57: 399
[24]
Peng Q M, Li X J, Ma N, et al.Effects of backward extrusion on mechanical and degradation properties of Mg-Zn biomaterial[J]. J. Mech. Behav. Biomed., 2012, 10: 128
[25]
Cai S H, Lei T, Li N F, et al.Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys[J]. Mater. Sci. Eng., 2012, C32: 2570
[26]
Zhang S X, Zhang X N, Zhao C L, et al.Research on an Mg-Zn alloy as a degradable biomaterial[J]. Acta Biomater., 2010, 6: 626
[27]
Wei S H, Zhu T P, Hou H B, et al.Effects of Pb/Sn additions on the age-hardening behaviour of Mg-4Zn alloys[J]. Mater. Sci. Eng., 2014, A597: 52
[28]
Boehlert C J, Knittel K.The microstructure, tensile properties, and creep behavior of Mg-Zn alloys containing 0~4.4 wt.% Zn[J]. Mater. Sci. Eng., 2006, A417: 315
[29]
Zhang B P, Hou Y L, Wang X D, et al.Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions[J]. Mater. Sci. Eng., 2011, C31: 1667
[30]
Kubásek J, Vojtech D, Pospí?ilová I.Structural and corrosion characterization of biodegradable Mg-Zn alloy castings[J]. Kovove Mater., 2012, 50: 415
[31]
Liu X B, Shan D Y, Song Y W, et al.Effects of heat treatment on corrosion behaviors of Mg-3Zn magnesium alloy[J]. Trans. Nonferrous. Met. Soc., 2010, 20: 1345
[32]
Tsai A P, Murakami Y, Niikura A.The Zn-Mg-Y phase diagram involving quasicrystals[J]. Philos. Mag., 2000, 80A: 1043
[33]
Lee J Y, Do H K, Lim H K, et al.Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys[J]. Mater. Lett., 2005, 59: 3801
[34]
Luo Z P, Zhang S Q.High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy[J]. J. Mater. Sci. Lett., 2000, 19: 813
[35]
Singh A, Watanabe M, Kato A, et al.Formation of icosahedral-hexagonal H phase nano-composites in Mg-Zn-Y alloys[J]. Scr. Mater., 2004, 51: 955
[36]
Yoshimoto S, Yamasaki M, Kawamura Y.Microstructure and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure[J]. Mater. Trans., 2006, 47: 959
[37]
Gu X N, Xie X H, Li N, et al.In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal[J]. Acta Biomater., 2012, 8: 2360
[38]
Bornapour M, Muja N, Shum-Tim D, et al.Biocompatibility and biodegradability of Mg-Sr alloys: The formation of Sr-substituted hydroxyapatite[J]. Acta Biomater., 2013, 9: 5319
[39]
Fan Y, Wu G H, Zhai C Q. Effect of strontium on mechanical properties and corrosion resistance of AZ91D [J]. Mater. Sci. Forum, 2007, 546-549: 567
[40]
Zeng X Q, Wang Y X, Ding W J, et al.Effect of strontium on the microstructure, mechanical properties, and fracture behavior of AZ31 magnesium alloy[J]. Metall. Mater. Trans., 2006, 37A: 1333
[41]
Brar H S, Wong J, Manuel M V.Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials[J]. J. Mech. Behav. Biomed., 2012, 7: 87
[42]
Pennington J A T. Silicon in foods and diets[J]. Food Addit. Contam., 1991, 8: 97
[43]
Carlisle E M.Silicon: A requirement in bone formation independent of vitamin D1[J]. Calcif. Tissue Int., 1981, 33: 27
[44]
Carlisle E M.Silicon: A possible factor in bone calcification[J]. Science, 1970, 167: 279
[45]
Jugdaohsingh R, Tucker K L, Qiao N, et al.Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort[J]. J. Bone Miner. Res., 2004, 19: 297
[46]
Reffitt D M, Ogston N, Jugdaohsingh R, et al.Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro[J]. Bone, 2003, 32: 127
[47]
Gu X N, Zheng Y F, Cheng Y, et al.In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials, 2009, 30: 484
[48]
Hu X S, Wu K, Zheng M Y, et al. Low frequency damping capacities and mechanical properties of Mg-Si alloys [J]. Mater. Sci. Eng., 2007, A452-453: 374
[49]
Zhang E L, Yang L, Xu J W, et al.Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application[J]. Acta Biomater., 2010, 6: 1756
[50]
Rokhlin L L.Magnesium Alloys Containing Rare Earth Metals: Structure and Properties[M]. London: Taylor & Francis, 2003: 1
[51]
Ji Y J, Xiao B, Wang Z H, et al.The suppression effect of light rare earth elements on proliferation of two cancer cell lines[J]. Biomed. Environ. Sci., 2000, 13: 287
[52]
Dai Y C, Li J, Li J, et al.Effects of rare earth compounds on growth and apoptosis of leukemic cell lines[J]. In Vitro Cell Dev. Biol. Anim., 2002, 38: 373
[53]
Leng Z, Zhang J H, Zhang M L, et al.Microstructure and high mechanical properties of Mg-9RY-4Zn (RY: Y-rich misch metal) alloy with long period stacking ordered phase[J]. Mater. Sci. Eng., 2012, A540: 38
[54]
Hagihara K, Yokotani N, Umakoshi Y.Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure[J]. Intermetallics, 2010, 18: 267
[55]
Leng Z, Zhang J H, Yin T T, et al.Influence of biocorrosion on microstructure and mechanical properties of deformed Mg-Y-Er-Zn biomaterial containing 18R-LPSO phase[J]. J. Mech. Behav. Biomed., 2013, 28: 332
[56]
Zhang X B, Yuan G Y, Mao L, et al.Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy[J]. J. Mech. Behav. Biomed., 2012, 7: 77
[57]
Birbilis N, Easton M A, Sudholz A D, et al.On the corrosion of binary magnesium-rare earth alloys[J]. Corros. Sci., 2009, 51: 683
[58]
Yang L, Huang Y D, Peng Q M, et al.Mechanical and corrosion properties of binary Mg-Dy alloys for medical applications[J]. Mater. Sci. Eng., 2011, B176: 1827
[59]
Liu M, Schmutz P, Uggowitzer P J, et al.The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys[J]. Corros. Sci., 2010, 52: 3687
[60]
Hort N, Huang Y, Fechner D, et al.Magnesium alloys as implant materials——Principles of property design for Mg-RE alloys[J]. Acta Biomater., 2010, 6: 1714
[61]
Gu X N, Li X L, Zhou W R, et al.Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material[J]. Biomed. Mater., 2010, 5: 35013
[62]
Berglund I S, Brar H S, Dolgova N, et al.Synthesis and characterization of Mg-Ca-Sr alloys for biodegradable orthopedic implant applications[J]. J. Biomed. Mater. Res., 2012, 100B: 1524
[63]
Gu X N, Li N, Zheng Y F, et al.In vitro degradation performance and biological response of a Mg-Zn-Zr alloy[J]. Mater. Sci. Eng., 2011, B176: 1778
[64]
Li Y C, Wen C E, Mushahary D, et al.Mg-Zr-Sr alloys as biodegradable implant materials[J]. Acta Biomater., 2012, 8: 3177
[65]
Wang W D, Han J J, Yang X, et al.Novel biocompatible magnesium alloys design with nutrient alloying elements Si, Ca and Sr: Structure and properties characterization[J]. Mater. Sci. Eng., 2016, B214: 26
[66]
Witte F, Fischer J, Nellesen J, et al.In vitro and in vivo corrosion measurements of magnesium alloys[J]. Biomaterials, 2006, 27: 1013
[67]
Wong H M, Yeung K W K, Lam K O, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants[J]. Biomaterials, 2010, 31: 2084
[68]
Witte F, Fischer J, Nellesen J, et al.In vivo corrosion and corrosion protection of magnesium alloy LAE442[J]. Acta Biomater., 2010, 6: 1792
[69]
Thomann M, Krause C, Angrisani N, et al.Influence of a magnesium-fluoride coating of magnesium-based implants (MgCa0.8) on degradation in a rabbit model[J]. J. Biomed. Mater. Res., 2010, 93A: 1609
[70]
Xu L P, Yu G N, Zhang E, et al.In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application[J]. J. Biomed. Mater. Res., 2007, 83A: 703
[71]
Xu L P, Pan F, Yu G N, et al.In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy[J]. Biomaterials, 2009, 30: 1512
[72]
Chen S, Guan S K, Li W, et al.In vivo degradation and bone response of a composite coating on Mg-Zn-Ca alloy prepared by microarc oxidation and electrochemical deposition[J]. J. Biomed. Mater. Res., 2012, 100B: 533
[73]
Castellani C, Lindtner R A, Hausbrandt P, et al.Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control[J]. Acta Biomater., 2011, 7: 432
[74]
Remennik S, Bartsch I, Willbold E, et al.New, fast corroding high ductility Mg-Bi-Ca and Mg-Bi-Si alloys, with no clinically observable gas formation in bone implants[J]. Mater. Sci. Eng., 2011, B176: 1653
[75]
Zhao Y, Jamesh M I, Li W K, et al.Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys[J]. Acta Biomater., 2014, 10: 544
[76]
Wang X M, Zeng X Q, Wu G S, et al.Effects of tantalum ion implantation on the corrosion behavior of AZ31 magnesium alloys[J]. J. Alloys Compd., 2007, 437: 87
[77]
Xu R Z, Wu G S, Yang X B, et al.Controllable degradation of biomedical magnesium by chromium and oxygen dual ion implantation[J]. Mater. Lett., 2011, 65: 2171
[78]
Jamesh M I, Wu G S, Zhao Y, et al.Effects of zirconium and oxygen plasma ion implantation on the corrosion behavior of ZK60 Mg alloy in simulated body fluids[J]. Corros. Sci., 2014, 82: 7
[79]
Jamesh M, Wu G S, Zhao Y, et al.Effects of silicon plasma ion implantation on electrochemical corrosion behavior of biodegradable Mg-Y-RE Alloy[J]. Corros. Sci., 2013, 69: 158
[80]
Liu Y, Bian D, Wu Y H, et al.Influence of biocompatible metal ions (Ag, Fe, Y) on the surface chemistry, corrosion behavior and cytocompatibility of Mg-1Ca alloy treated with MEVVA[J]. Colloids Surf., 2015, 133B: 99
[81]
Zhang E L, Xu L P, Yang K.Formation by ion plating of Ti-coating on pure Mg for biomedical applications[J]. Scr. Mater., 2005, 53: 523
[82]
Cui X F, Jin G, Li Q F, et al.Electroless Ni-P plating with a phytic acid pretreatment on AZ91D magnesium alloy[J]. Mater. Chem. Phys., 2010, 121: 308
[83]
Yang J X, Cui F Z, Lee I S, et al.Ion-beam assisted deposited C-N coating on magnesium alloys[J]. Surf. Coat. Technol., 2008, 202: 5737
[84]
Yang J X, Jiao Y P, Cui F Z, et al.Modification of degradation behavior of magnesium alloy by IBAD coating of calcium phosphate[J]. Surf. Coat. Technol., 2008, 202: 5733
Li M, Cheng Y, Zheng Y F, et al.Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film[J]. Appl. Surf. Sci., 2012, 258: 3074
[87]
Gu X N, Zheng W, Cheng Y, et al.A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate[J]. Acta Biomater., 2009, 5: 2790
[88]
Zeng R C, Cui L Y, Jiang K, et al.In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly (L-lactic acid) composite coating on Mg-1Li-1Ca alloy for orthopedic implants[J]. ACS Appl. Mater. Interfaces, 2016, 8: 10014
[89]
Jia Z J, Li M, Liu Q, et al.Micro-arc oxidization of a novel Mg-1Ca alloy in three alkaline KF electrolytes: Corrosion resistance and cytotoxicity[J]. Appl. Surf. Sci., 2014, 292: 1030
[90]
Gu X N, Li N, Zhou W R, et al.Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy[J]. Acta Biomater., 2011, 7: 1880
[91]
Song Y, Zhang S X, Li J A, et al.Electrodeposition of Ca-P coatings on biodegradable Mg alloy: In vitro biomineralization behavior[J]. Acta Biomater., 2010, 6: 1736
[92]
Song Y W, Shan D Y, Han E H.Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application[J]. Mater. Lett., 2008, 62: 3276
[93]
Wang H X, Guan S K, Wang X, et al.In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process[J]. Acta Biomater., 2010, 6: 1743
[94]
Wang H X, Guan S K, Wang Y S, et al.In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg-Zn-Ca alloy for bone implant application[J]. Colloids Surf., 2011, 88B: 254
[95]
Wang B, Gao J H, Wang L G, et al.Biocorrosion of coated Mg-Zn-Ca alloy under constant compressive stress close to that of human tibia[J]. Mater. Lett., 2012, 70: 174
[96]
Meng E C, Guan S K, Wang H X, et al.Effect of electrodeposition modes on surface characteristics and corrosion properties of fluorine-doped hydroxyapatite coatings on Mg-Zn-Ca alloy[J]. Appl. Surf. Sci., 2011, 257: 4811
[97]
Roy A, Singh S S, Datta M K, et al.Novel sol-gel derived calcium phosphate coatings on Mg4Y alloy[J]. Mater. Sci. Eng., 2011, B176: 1679
[98]
Gu X N, Zheng Y F, Lan Q X, et al.Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan[J]. Biomed. Mater., 2009, 4: 044109
[99]
Xu L P, Yamamoto A.In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition[J]. Appl. Surf. Sci., 2012, 258: 6353
[100]
Xu L P, Yamamoto A.Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating[J]. Colloids Surf., 2012, 93B: 67
[101]
Li J N, Cao P, Zhang X N, et al.In vitro degradation and cell attachment of a PLGA coated biodegradable Mg-6Zn based alloy[J]. J Mater. Sci., 2010, 45: 6038
[102]
Cai K Y, Sui X J, Hu Y, et al.Fabrication of anticorrosive multilayer onto magnesium alloy substrates via spin-assisted layer-by-layer technique[J]. Mater. Sci. Eng., 2011, C31: 1800
[103]
Luo X L, Cui X Y T. Electrochemical deposition of conducting polymer coatings on magnesium surfaces in ionic liquid[J]. Acta Biomater., 2011, 7: 441
[104]
Li L C, Gao J C, Wang Y.Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid[J]. Surf. Coat. Technol., 2004, 185: 92
[105]
Geng F, Tan L L, Jin X X, et al.The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium[J]. J. Mater. Sci. Mater. Med., 2009, 20: 1149
[106]
Gao J C, Li L C, Wang Y, et al.Biocompatibility of magnesium after surface modification by heat-organic films-treatment[J]. Rare Met. Mater. Eng., 2005, 34: 903
[107]
Zhang C Y, Zeng R C, Chen R S, et al.Preparation of calcium phosphate coatings on Mg-1.0Ca alloy[J]. Trans. Nonferrous. Met. Soc. China, 2010, 20: S655
[108]
Zhang C Y, Zeng R C, Liu C L, et al.Comparison of calcium phosphate coatings on Mg-Al and Mg-Ca alloys and their corrosion behavior in Hank's solution[J]. Surf. Coat. Technol., 2010, 204: 3636
[109]
Li J N, Song Y, Zhang S X, et al.In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy[J]. Biomaterials, 2010, 31: 5782
[110]
Xu L P, Zhang E L, Yang K.Phosphating treatment and corrosion properties of Mg-Mn-Zn alloy for biomedical application[J]. J. Mater. Sci. Mater. Med., 2009, 20: 859
[111]
Guo L, Liu K, Zhang S L, et al.Biocompatibility of CA-P/AZ31B magnesium alloy[J]. Rare Met. Mater. Eng., 2009, 38: 99
[112]
Yan T T, Tan L L, Xiong D S, et al.Preparation and properties studies of rare earth conversion coating on bio-medical AZ31B magnesium alloy[J]. Rare Met. Mater. Eng., 2009, 38: 918
[113]
Guo L, Liu K, Zhang S L, et al.Cytotoxicity of AZ31B magnesium alloy covering with magnesium oxide[J]. Rare Met. Mater. Eng., 2008, 37: 1027
[114]
Zeng R C, Chen J, Dietzel W, et al.Electrochemical behavior of magnesium alloys in simulated body fluids[J]. Trans. Nonferrous. Met. Soc. China, 2007, 17: S166
[115]
Zhang X P, Zhao Z P, Wu F M, et al.Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank's solution[J]. J. Mater. Sci., 2007, 42: 8523
[116]
Wang Y M, Wang F H, Xu M J, et al.Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for biomedical application[J]. Appl. Surf. Sci., 2009, 255: 9124
[117]
Guan Y C, Zhou W, Zheng H Y.Effect of laser surface melting on corrosion behaviour of AZ91D Mg alloy in simulated-modified body fluid[J]. J. Appl. Electrochem., 2009, 39: 1457
[118]
Xin Y C, Jiang J, Huo K F, et al.Corrosion resistance and cytocompatibility of biodegradable surgical magnesium alloy coated with hydrogenated amorphous silicon[J]. J. Biomed. Mater. Res., 2009, 89A: 717
[119]
Xu X H, Cheng J, Zhang C H, et al.Bio-corrosion and polymer coating modification of magnesium alloys for medicine[J]. Rare Met. Mater. Eng., 2008, 37: 1225
[120]
Bowen P K, Drelich J, Goldman J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J]. Adv. Mater., 2013, 25: 2577
[121]
Vojtěch D, Kubásek J, ?erák J, et al.Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J]. Acta Biomater., 2011, 7: 3515
[122]
Kubásek J, Vojtěch D.Zn-based alloys as an alternative biodegradable materials [R]. Brno, Czech Republic, EU, 2012
[123]
Gong H B, Wang K, Strich R, et al.In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy[J]. J. Biomed. Mater. Res., 2015, 103B: 1632
[124]
Li H F, Xie X H, Zheng Y F, et al.Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr[J]. Sci. Rep., 2015, 5: 10719
[125]
Liu X W, Sun J K, Zhou F Y, et al.Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application[J]. Mater. Des., 2016, 94: 95
[126]
Li H F, Yang H T, Zheng Y F, et al.Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr[J]. Mater. Des., 2015, 83: 95
[127]
Hermawan H, Dubé D, Mantovani D.Degradable metallic biomaterials: Design and development of Fe-Mn alloys for stents[J]. J. Biomed. Mater. Res., 2010, 93A: 1
[128]
Moravej M, Prima F, Fiset M, et al.Electroformed iron as new biomaterial for degradable stents: Development process and structure-properties relationship[J]. Acta Biomater., 2010, 6: 1726
[129]
Nie F L, Zheng Y F, Wei S C, et al.In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron[J]. Biomed. Mater., 2010, 5: 065015
[130]
Wegener B, Sievers B, Utzschneider S, et al.Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials[J]. Mater. Sci. Eng., 2011, B176: 1789
[131]
Cheng J, Zheng Y.In vitro study on newly designed biodegradable Fe-X composites (X=W, CNT) prepared by spark plasma sintering[J]. J. Biomed. Mater. Res., 2013, 101B: 485
[132]
Feng Q M, Zhang D Y, Xin C H, et al.Characterization and in vivo evaluation of a bio-corrodible nitrided iron stent[J]. J. Mater. Sci. Mater. Med., 2013, 24: 713
[133]
Schinhammer M, H?nzi A C, L?ffler J F, et al.Design strategy for biodegradable Fe-based alloys for medical applications[J]. Acta Biomater., 2010, 6: 1705
[134]
Liu B, Zheng Y F, Ruan L Q.In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material[J]. Mater. Lett., 2011, 65: 540
[135]
Xu W L, Lu X, Tan L L, et al.Study on properties of a novel biodegrad-able Fe-30Mn-1C alloy[J]. Acta Metall. Sin., 2011, 47: 1342
Liu B, Zheng Y F.Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron[J]. Acta Biomater., 2011, 7: 1407
[137]
Hermawan H, Purnama A, Dube D, et al.Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies[J]. Acta Biomater., 2010, 6: 1852
[138]
Huang T, Cheng J, Zheng Y F.In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering[J]. Mater. Sci. Eng., 2014, C35: 43
[139]
Schaffer J E, Nauman E A, Stanciu L A.Cold-drawn bioabsorbable ferrous and ferrous composite wires: An evaluation of mechanical strength and fatigue durability[J]. Metall. Mater. Trans., 2012, 43B: 984
[140]
Obayi C S, Tolouei R, Paternoster C, et al.Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants[J]. Acta Biomater., 2015, 17: 68
[141]
Peuster M, Wohlsein P, Brügmann M, et al.A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal——results 6-18 months after implantation into New Zealand white rabbits[J]. Heart, 2001, 86: 563
[142]
Zhu S F, Huang N, Xu L, et al.Biocompatibility of pure iron: In vitro assessment of degradation kinetics and cytotoxicity on endothelial cells[J]. Mater. Sci. Eng., 2009, C29: 1589
[143]
Mueller P P, May T, Perz A, et al.Control of smooth muscle cell proliferation by ferrous iron[J]. Biomaterials, 2006, 27: 2193
[144]
Peuster M, Hesse C, Schloo T, et al.Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta[J]. Biomaterials, 2006, 27: 4955
[145]
Waksman R, Pakala R, Baffour R, et al.Short-term effects of biocorrodible iron stents in porcine coronary arteries[J]. J Interv. Cardiol., 2008, 21: 15
[146]
Pierson D, Edick J, Tauscher A, et al.A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials[J]. J. Biomed. Mater. Res., 2012, 100B: 58
[147]
Mueller P P, Arnold S, Badar M, et al.Histological and molecular evaluation of iron as degradable medical implant material in a murine animal model[J]. J. Biomed. Mater. Res., 2012, 100A: 2881
[148]
Wu C, Hu X Y, Qiu H, et al.A preliminary study of biodegradable iron stent in mini-swine coronary artery[J]. J. Am. Coll. Cardiol., 2012, 60: B166
[149]
Kraus T, Moszner F, Fischerauer S, et al.Biodegradable Fe-based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks[J]. Acta Biomater., 2014, 10: 3346
[150]
Hermawan H, Dubé D, Mantovani D. Development of degradable Fe-35Mn alloy for biomedical application [J]. Adv. Mater. Res., 2007, 15-17: 107
[151]
Hermawan H, Alamdari H, Mantovani D, et al.Iron-manganese: New class of metallic degradable biomaterials prepared by powder metallurgy[J]. Powder Metall., 2008, 51: 38
[152]
Schinhammer M, Gerber I, H?nzi A C, et al.On the cytocompatibility of biodegradable Fe-based alloys[J]. Mater. Sci. Eng., 2013, C33: 782
[153]
Hermawan H, Purnama A, Dube D, et al.Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies[J]. Acta Biomater., 2010, 6: 1852
[154]
Schinhammer M, Pecnik C M, Rechberger F, et al.Recrystallization behavior, microstructure evolution and mechanical properties of biodegradable Fe-Mn-C (-Pd) TWIP alloys[J]. Acta Mater., 2012, 60: 2746
[155]
Schinhammer M, Steiger P, Moszner F, et al.Degradation performance of biodegradable Fe-Mn-C (-Pd) alloys[J]. Mater. Sci. Eng., 2013, C33: 1882
[156]
Huang T, Cheng J, Bian D, et al.Fe-Au and Fe-Ag composites as candidates for biodegradable stent materials[J]. J. Biomed. Mater. Res., 2015, 104B: 225
[157]
Cheng J, Huang T, Zheng Y.Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe-Fe2O3 composites[J]. J. Biomed. Mater. Res., 2014, 102A: 2277
[158]
Ulum M, Arafat A, Noviana D, et al.In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications[J]. Mater. Sci. Eng., 2014, C36: 336
[159]
Surmenev R A, Surmeneva M A, Ivanova A A.Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis——A review[J]. Acta Biomater., 2013, 10: 557
[160]
Zhang B G X, Myers D E, Wallace G G, et al. Bioactive coatings for orthopaedic implants——Recent trends in development of implant coatings[J]. Int. J. Mol. Sci., 2014, 15: 11878
[161]
Tao L, Jin W, Shi Q, et al.Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus[J]. Biomaterials, 2015, 51: 173
[162]
Zhang Y L, Xia L G, Zhai D, et al.Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis[J]. Nanoscale, 2015, 7: 19207
[163]
Wu C T, Chen Z T, Yi D H, et al.Multidirectional effects of Sr-, Mg-, and Si-containing bioceramic coatings with high bonding strength on inflammation, osteoclastogenesis, and osteogenesis[J]. Acs Appl. Mater. Interfaces, 2014, 6: 4264
[164]
Hiromoto S, Inoue M, Taguchi T, et al.In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite[J]. Acta Biomater., 2014, 11: 520
[165]
Chai F, Ochsenbein A, Traisnel M, et al.Improving endothelial cell adhesion and proliferation on titanium by sol-gel derived oxide coating[J]. J. Biomed. Mater. Res., 2010, 92A: 754
[166]
Doro F G, Ramos A P, Schneider J F, et al.Deposition of organic-inorganic hybrid coatings over 316L surgical stainless steel and evaluation on vascular cells[J]. Can. J. Chem., 2014, 92: 987
[167]
Laemmel E, Penhoat J, Warocquier-Clérout R, et al.Heparin immobilized on proteins usable for arterial prosthesis coating: Growth inhibition of smooth-muscle cells[J]. J. Biomed. Mater. Res., 1998, 39A: 446
[168]
Crowder S W, Gupta M K, Hofmeister L H, et al.Modular polymer design to regulate phenotype and oxidative response of human coronary artery cells for potential stent coating applications[J]. Acta Biomater., 2012, 8: 559
[169]
Klement W, Willens R H, Duwez P.Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187: 869
[170]
Morrison M L, Buchanan R A, Peker A, et al.Electrochemical behavior of a Ti-based bulk metallic glass[J]. J. Non-Cryst. Solids, 2007, 353: 2115
[171]
Kim Y C, Bae D H, Kim W T, et al.Glass forming ability and crystallization behavior of Ti-based amorphous alloys with high specific strength[J]. J. Non-Cryst. Solids, 2003, 325: 242
[172]
Xie K F, Yao K F, Huang T Y.A Ti-based bulk glassy alloy with high strength and good glass forming ability[J]. Intermetallics, 2010, 18: 1837
[173]
Zhu S L, Wang X M, Qin F X, et al.A new Ti-based bulk glassy alloy with potential for biomedical application[J]. Mater. Sci. Eng., 2007, A459: 233
[174]
Xie G Q, Qin F X, Zhu S L, et al.Ni-free Ti-based bulk metallic glass with potential for biomedical applications produced by spark plasma sintering[J]. Intermetallics, 2012, 29: 99
[175]
Calin M, Gebert A, Ghinea A C, et al.Designing biocompatible Ti-based metallic glasses for implant applications[J]. Mater. Sci. Eng., 2013, C33: 875
[176]
Oak J J, Louzguine-Luzgin D V, Inoue A. Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial, and investigation of its mechanical properties, corrosion, and crystallization behavior[J]. J. Mater. Res., 2007, 22: 1346
[177]
Wang Y B, Li H F, Cheng Y, et al.In vitro and in vivo studies on Ti-based bulk metallic glass as potential dental implant material[J]. Mater. Sci. Eng., 2013, C33: 3489
[178]
Ma C L, Soejima H, Ishihara S, et al.New Ti-based bulk glassy alloys with high glass-forming ability and superior mechanical properties[J]. Mater. Trans., 2004, 45: 3223
[179]
Wang G, Fan H B, Huang Y J, et al.A new TiCuHfSi bulk metallic glass with potential for biomedical applications[J]. Mater. Des., 2014, 54: 251
[180]
Pang S J, Liu Y, Li H F, et al.New Ti-based Ti-Cu-Zr-Fe-Sn-Si-Ag bulk metallic glass for biomedical applications[J]. J. Alloys Compd., 2015, 625: 323
[181]
Fornell J, Van Steenberge N, Varea A, et al.Enhanced mechanical properties and in vitro corrosion behavior of amorphous and devitrified Ti40Zr10Cu38Pd12 metallic glass[J]. J. Mech. Behav. Biomed., 2011, 4: 1709
[182]
Fornell J, Pellicer E, Van Steenberge N, et al.Improved plasticity and corrosion behavior in Ti-Zr-Cu-Pd metallic glass with minor additions of Nb: An alloy composition intended for biomedical applications[J]. Mater. Sci. Eng., 2013, A559: 159
[183]
Oak J J, Louzguine-Luzgin D V, Inoue A. Investigation of glass-forming ability, deformation and corrosion behavior of Ni-free Ti-based BMG alloys designed for application as dental implants[J]. Mater. Sci. Eng., 2009, C29: 322
[184]
Bai L, Cui C X, Wang Q Z, et al.Ti-Zr-Fe-Si system amorphous alloys with excellent biocompatibility[J]. J. Non-Cryst. Solids, 2008, 354: 3935
[185]
Liu L, Qiu C L, Huang C Y, et al.Biocompatibility of Ni-free Zr-based bulk metallic glasses[J]. Intermetallics, 2009, 17: 235
[186]
Horton J A, Parsell D E. Biomedical potential of a zirconium-based bulk metallic glass [J]. MRS Online Proceeding Library Archive, 2011, 754: CC1.5
[187]
Liu C T, Heatherly L, Easton D S, et al.Test environments and mechanical properties of Zr-base bulk amorphous alloys[J]. Metall. Mater. Trans., 1998, 29A: 1811
[188]
Lin C H, Huang C H, Chuang J F, et al.Simulated body-fluid tests and electrochemical investigations on biocompatibility of metallic glasses[J]. Mater. Sci. Eng., 2012, C32: 2578
[189]
Qiu C L, Chen Q, Liu L, et al.A novel Ni-free Zr-based bulk metallic glass with enhanced plasticity and good biocompatibility[J]. Scr. Mater., 2006, 55: 605
[190]
Liu L, Qiu C L, Chen Q, et al.Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses[J]. J. Biomed. Mater. Res., 2008, 86A: 160
[191]
Wada T, Qin F X, Wang X M, et al.Formation and bioactivation of Zr-Al-Co bulk metallic glasses[J]. J. Mater. Res., 2009, 24: 2941
[192]
Kawashima A, Wada T, Ohmura K, et al.A Ni- and Cu-free Zr-based bulk metallic glass with excellent resistance to stress corrosion cracking in simulated body fluids[J]. Mater. Sci. Eng., 2012, A542: 140
[193]
Liu Z, Chan K C, Liu L.Development of Ni- and Cu-free Zr-based bulk metallic glasses for biomedical applications[J]. Mater. Trans., 2011, 52: 61
[194]
Liu Y, Wang Y M, Pang H F, et al.A Ni-free ZrCuFeAlAg bulk metallic glass with potential for biomedical applications[J]. Acta Biomater., 2013, 9: 7043
[195]
Sun Y, Huang Y J, Fan H B, et al.Comparison of mechanical behaviors of several bulk metallic glasses for biomedical application[J]. J. Non-Cryst. Solids, 2014, 406: 144
[196]
Huang L, Pu C, Fisher R K, et al.A Zr-based bulk metallic glass for future stent applications: Materials properties, finite element modeling, and in vitro human vascular cell response[J]. Acta Biomater., 2015, 25: 356
[197]
Morrison M L, Buchanan R A, Peker A, et al.Cyclic-anodic-polarization studies of a Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass[J]. Intermetallics, 2004, 12: 1177
[198]
Wang Y B, Zheng Y F, Wei S C, et al.In vitro study on Zr-based bulk metallic glasses as potential biomaterials[J]. J. Biomed. Mater. Res., 2011, 96B: 34
[199]
Liu L, Qiu C L, Chen Q, et al.Corrosion behavior of Zr-based bulk metallic glasses in different artificial body fluids[J]. J. Alloys Compd., 2006, 425: 268
[200]
Lu X Y, Huang L, Pang S J, et al.Formation and biocorrosion behavior of Zr-Al-Co-Nb bulk metallic glasses[J]. Chin. Sci. Bull., 2012, 57: 1723
[201]
Hua N B, Huang L, Wang J F, et al.Corrosion behavior and in vitro biocompatibility of Zr-Al-Co-Ag bulk metallic glasses: An experimental case study[J]. J. Non-Cryst. Solids, 2012, 358: 1599
[202]
Huang L, Cao Z, Meyer H M, et al.Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: Effects of composition and roughness[J]. Acta Biomater., 2011, 7: 395
[203]
Li H F, Zheng Y F, Xu F, et al.In vitro investigation of novel Ni free Zr-based bulk metallic glasses as potential biomaterials[J]. Mater. Lett., 2012, 75: 74
[204]
Ponnambalam V, Poon S J, Shiflet G J, et al.Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys[J]. Appl. Phys. Lett., 2003, 83: 1131
[205]
Gu X J, Poon S J, Shiflet G J, et al.Ductility improvement of amorphous steels: Roles of shear modulus and electronic structure[J]. Acta Mater., 2008, 56: 88
[206]
Shen J, Chen Q J, Sun J F, et al.Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy[J]. Appl. Phys. Lett., 2005, 86: 151907
[207]
Wang Y B, Li H F, Cheng Y, et al.Corrosion performances of a Nickel-free Fe-based bulk metallic glass in simulated body fluids[J]. Electrochem. Commun., 2009, 11: 2187
[208]
Gu X J, Poon S J, Shiflet G J.Mechanical properties of iron-based bulk metallic glasses[J]. J. Mater. Res., 2007, 22: 344
[209]
Gu X J, Poon S J, Shiflet G J.Effects of carbon content on the mechanical properties of amorphous steel alloys[J]. Scr. Mater., 2007, 57: 289
[210]
Zohdi H, Shahverdi H R, Hadavi S M M. Effect of Nb addition on corrosion behavior of Fe-based metallic glasses in Ringer's solution for biomedical applications[J]. Electrochem. Commun., 2011, 13: 840
[211]
Wang Y B, Li H F, Zheng Y F, et al.Corrosion performances in simulated body fluids and cytotoxicity evaluation of Fe-based bulk metallic glasses[J]. Mater. Sci. Eng., 2012, C32: 599
[212]
Fang H Z, Hui X D, Chen G L.Effects of Mn addition on the magnetic property and corrosion resistance of bulk amorphous steels[J]. J. Alloys Compd., 2008, 464: 292
[213]
Cao J D, Kirkland N T, Laws K J, et al.Ca-Mg-Zn bulk metallic glasses as bioresorbable metals[J]. Acta Biomater., 2012, 8: 2375
[214]
Li J F, Zhao D Q, Zhang M L, et al.CaLi-based bulk metallic glasses with multiple superior properties[J]. Appl. Phys. Lett., 2008, 93: 171907
[215]
Jiao W, Li H F, Zhao K, et al.Development of CaZn based glassy alloys as potential biodegradable bone graft substitute[J]. J. Non-Cryst. Solids, 2011, 357: 3830
[216]
Li H F, Xie X H, Zhao K, et al.In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass[J]. Acta Biomater., 2013, 9: 8561
[217]
Liu K M, Zhou H T, Yang B, et al.Influence of Si on glass forming ability and properties of the bulk amorphous alloy Mg60Cu30Y10[J]. Mater. Sci. Eng., 2010, A527: 7475
[218]
Gu X, Shiflet G J, Guo F Q, et al.Mg-Ca-Zn bulk metallic glasses with high strength and significant ductility[J]. J. Mater. Res., 2005, 20: 1935
[219]
Zhao Y Y, Ma E, Xu J.Reliability of compressive fracture strength of Mg-Zn-Ca bulk metallic glasses: Flaw sensitivity and Weibull statistics[J]. Scr. Mater., 2008, 58: 496
[220]
Zberg B, Arata E R, Uggowitzer P J, et al.Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics[J]. Acta Mater., 2009, 57: 3223
[221]
Guo S F, Chan K C, Jiang X Q, et al.Atmospheric RE-free Mg-based bulk metallic glass with high bio-corrosion resistance[J]. J. Non-Cryst. Solids, 2013, 379: 107
[222]
Li H F, Pang S J, Liu Y, et al.Biodegradable Mg-Zn-Ca-Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications[J]. Mater. Des., 2015, 67: 9
[223]
Li H F, Pang S J, Liu Y, et al.In vitro investigation of Mg-Zn-Ca-Ag bulk metallic glasses for biomedical applications[J]. J. Non-Cryst. Solids, 2015, 427: 134
[224]
Jiao W, Zhao K, Xi X K, et al.Zinc-based bulk metallic glasses[J]. J. Non-Cryst. Solids, 2010, 356: 1867
[225]
Li H F, Zhao K, Wang Y B, et al.Study on bio-corrosion and cytotoxicity of a sr-based bulk metallic glass as potential biodegradable metal[J]. J. Biomed. Mater. Res., 2012, 100B: 368
[226]
Zhao K, Li J F, Zhao D Q, et al.Degradable Sr-based bulk metallic glasses[J]. Scr. Mater., 2009, 61: 1091
[227]
Zberg B, Uggowitzer P J, L?ffler J F.MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants[J]. Nat. Mater., 2009, 8: 887
[228]
Gu X N, Zheng Y F, Zhong S P, et al.Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses[J]. Biomaterials, 2010, 31: 1093
[229]
Cao J D, Martens P, Laws K J, et al.Quantitative in vitro assessment of Mg65Zn30Ca5 degradation and its effect on cell viability[J]. J. Biomed. Mater. Res., 2013, 101B: 43
[230]
Senkov O N, Scott J M.Formation and thermal stability of Ca-Mg-Zn and Ca-Mg-Zn-Cu bulk metallic glasses[J]. Mater. Lett., 2004, 58: 1375
[231]
Senkov O N, Scott J M.Glass forming ability and thermal stability of ternary Ca-Mg-Zn bulk metallic glasses[J]. J. Non-Cryst. Solids, 2005, 351: 3087
[232]
Wang G Y, Liaw P K, Senkov O N, et al.Mechanical and fatigue behavior of Ca65Mg15Zn20 bulk-metallic glass[J]. Adv. Eng. Mater., 2009, 11: 27
[233]
Wang J Q, Wang W H, Bai H Y.Soft ytterbium-based bulk metallic glasses with strong liquid characteristic by design[J]. Appl. Phys. Lett., 2009, 94: 041910
[234]
Nie F L, Zheng Y F, Wei S C, et al.In vitro and in vivo studies on nanocrystalline Ti fabricated by equal channel angular pressing with microcrystalline CP Ti as control[J]. J. Biomed. Mater. Res., 2013, 101A: 1694
[235]
Purcek G, Yapici G G, Karaman I, et al.Effect of commercial purity levels on the mechanical properties of ultrafine-grained titanium[J]. Mater. Sci. Eng., 2011, A528: 2303
[236]
Valiev R Z, Rack H J, Lowe T C.Medical Device Materials[M]. Cleveland, OH: ASM, 2004: 362
[237]
Sergueeva A V, Stolyarov V V, Valiev R Z, et al.Enhanced superplasticity in a Ti-6Al-4V alloy processed by severe plastic deformation[J]. Scr. Mater., 2000, 43: 819
[238]
Saitova L, Semenova I, H?ppel H W, et al.Enhanced superplastic deformation behavior of ultrafine-grained Ti-6Al-4V alloy[J]. Materialwiss. Werkst., 2008, 39: 367
[239]
Sergueeva A V, Stolyarov V V, Valiev R Z, et al.Superplastic behaviour of ultrafine-grained Ti-6A1-4V alloys[J]. Mater. Sci. Eng., 2002, A323: 318
[240]
Despang F, Bernhardt A, Lode A, et al.Response of human bone marrow stromal cells to a novel ultra-fine-grained and dispersion-strengthened titanium-based material[J]. Acta Biomater., 2010, 6: 1006
[241]
Park C H, Lee C S, Kim Y J, et al.Improved pre-osteoblast response and mechanical compatibility of ultrafine-grained Ti-13Nb-13Zr alloy[J]. Clin. Oral Implan. Res., 2011, 22: 735
[242]
Huang C X, Gao Y L, Yang G, et al.Bulk nanocrystalline stainless steel fabricated by equal channel angular pressing[J]. J. Mater. Res., 2006, 21: 1687
[243]
Hadzima B, Jane?ek M, Estrin Y, et al.Microstructure and corrosion properties of ultrafine-grained interstitial free steel[J]. Mater. Sci. Eng., 2007, A462: 243
[244]
Misra R D K, Thein-Han W W, Pesacreta T C, et al. Cellular response of preosteoblasts to nanograined/ultrafine-grained structures[J]. Acta Biomater., 2009, 5: 1455
[245]
Misra R D K, Thein-Han W W, Pesacreta T C, et al. Biological significance of nanograined/ultrafine-grained structures: Interaction with fibroblasts[J]. Acta Biomater., 2010, 6: 3339
[246]
Venkatsurya P K C, Thein-Han W W, Misra R D K, et al. Advancing nanograined/ultrafine-grained structures for metal implant technology: Interplay between grooving of nano/ultrafine grains and cellular response[J]. Mater. Sci. Eng., 2010, C30: 1050
[247]
Zohdi H, Bozorg M, Jeshvaghani R A, et al.Corrosion performance and metal ion release of amorphous and nanocrystalline Fe-based alloys under simulated body fluid conditions[J]. Mater. Lett., 2013, 94: 193
[248]
Figueiredo R B, Langdon T G.Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP[J]. Mater. Sci. Eng., 2009, A501: 105
[249]
Li B, Joshi S, Azevedo K, et al.Dynamic testing at high strain rates of an ultrafine-grained magnesium alloy processed by ECAP[J]. Mater. Sci. Eng., 2009, A517: 24
[250]
Kim W J, Lee Y G.High-strength Mg-Al-Ca alloy with ultrafine grain size sensitive to strain rate[J]. Mater. Sci. Eng., 2011, A528: 2062
[251]
Jiang J H, Zhang F, Ma A B, et al.Biodegradable behaviors of ultrafine-grained ZE41A magnesium alloy in DMEM solution[J]. Metals, 2016, 6: 365
[252]
Kim H S, Kim W J.Enhanced corrosion resistance of ultrafine-grained AZ61 alloy containing very fine particles of Mg17Al12 phase[J]. Corros. Sci., 2013, 75: 228
[253]
Ge Q, Dellasega D, Demir A G, et al.The processing of ultrafine-grained Mg tubes for biodegradable stents[J]. Acta Biomater., 2013, 9: 8604
[254]
Mostaed E, Vedani M, Hashempour M, et al.Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications[J]. Biomatter, 2014, 4: e28283
[255]
Cheng X Y, Li S J, Murr L E, et al.Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting[J]. J. Mech. Behav. Biomed., 2012, 16: 153
[256]
Karlsson J, Snis A, Engqvist H, et al.Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions[J]. J. Mater. Process. Technol., 2013, 213: 2109
[257]
Koike M, Martinez K, Guo L, et al.Evaluation of titanium alloy fabricated using electron beam melting system for dental applications[J]. J. Mater. Process. Technol., 2011, 211: 1400
[258]
Harrysson O L A, Cansizoglu O, Marcellin-Little D J, et al. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology[J]. Mater. Sci. Eng., 2008, C28: 366
[259]
Sigl M, Lutzmann S, Z?h M F.Transient physical effects in electron beam sintering [A]. Solid Freeform Fabrication Symposium[C]. Austin, TX, 2006: 464
[260]
Tang H P, Qian M, Liu N, et al.Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting[J]. JOM, 2015, 67: 555
[261]
Safdar A, Wei L Y, Snis A, et al.Evaluation of microstructural development in electron beam melted Ti-6Al-4V[J]. Mater. Charact., 2012, 65: 8
[262]
Facchini L, Magalini E, Robotti P, et al.Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders[J]. Rapid Prototyping J., 2009, 15: 171
[263]
Christensen A, Lippincott A.Qualification of electron beam melted (EBM) Ti6Al4V-ELI for orthopaedic applications [A]. Proceedings from the Materials & Processes for Medical Devices Conference[C]. California, USA: ASM International, 2007: 48
[264]
Vrancken B, Thijs L, Kruth J P, et al.Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties[J]. J. Alloys Compd., 2012, 541: 177
[265]
Facchini L, Magalini E, Robotti P, et al.Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders[J]. Rapid Prototyping J., 2010, 16: 450
[266]
Standard Specification for Wrought Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401)[S]. ASTM, F136-13, 2013
[267]
Kruth J P, Levy G, Klocke F, et al.Consolidation phenomena in laser and powder-bed based layered manufacturing[J]. CIRP Ann.-Manuf. Technol., 2007, 56: 730
[268]
Lin C Y, Wirtz T, LaMarca F, et al. Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process[J]. J. Biomed. Mater. Res., 2007, 83A: 272
[269]
Thijs L, Verhaeghe F, Craeghs T, et al.A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Mater., 2010, 58: 3303
[270]
Sallica-Leva E, Jardini A L, Fogagnolo J B.Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting[J]. J. Mech. Behav. Biomed., 2013, 26: 98
[271]
Marcu T, Todea M, Gligor I, et al.Effect of surface conditioning on the flowability of Ti6Al7Nb powder for selective laser melting applications[J]. Appl. Surf. Sci., 2012, 258: 3276
[272]
Chlebus E, Ku?nicka B, Kurzynowski T, et al.Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting[J]. Mater. Charact., 2011, 62: 488
[273]
Speirs M, van Humbeeck J, Schrooten J, et al. The effect of pore geometry on the mechanical properties of selective laser melted Ti-13Nb-13Zr scaffolds[J]. Procedia CIRP, 2013, 5: 79
[274]
Zhang L C, Klemm D, Eckert J, et al.Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy[J]. Scr. Mater., 2011, 65: 21
[275]
Attar H, Calin M, Zhang L C, et al.Manufacture by selective laser melting and mechanical behavior of commercially pure titanium[J]. Mater. Sci. Eng., 2014, A593: 170
[276]
Gu D D, Hagedorn Y C, Meiners W, et al.Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Mater., 2012, 60: 3849
[277]
Barbas A, Bonnet A S, Lipinski P, et al.Development and mechanical characterization of porous titanium bone substitutes[J]. J. Mech. Behav. Biomed., 2012, 9: 34
Bathini U, Srivatsan T S, Patnaik A, et al.A study of the tensile deformation and fracture behavior of commercially pure titanium and titanium alloy: Influence of orientation and microstructure[J]. J. Mater. Eng. Perform., 2010, 19: 1172
Geetha M, Singh A K, Asokamani R, et al.Ti based biomaterials, the ultimate choice for orthopaedic implants——A review[J]. Prog. Mater. Sci., 2009, 54: 397
[282]
Zhang S Q, Li S J, Jia M T, et al.Fatigue properties of a multifunctional titanium alloy exhibiting nonlinear elastic deformation behavior[J]. Scr. Mater., 2009, 60: 733
[283]
Li S J, Cui T C, Hao Y L, et al.Fatigue properties of a metastable β-type titanium alloy with reversible phase transformation[J]. Acta Biomater., 2008, 4: 305
[284]
Long F W, Jiang Q W, Xiao L, et al.Compressive deformation behaviors of coarse- and ultrafine-grained pure titanium at different temperatures: A comparative study[J]. Mater. Trans., 2011, 52: 1617
[285]
Lin C W, Ju C P, Lin J H C. Comparison among mechanical properties of investment-Cast c. p. Ti, Ti-6Al-7Nb and Ti-15Mo-1Bi alloys[J]. Mater. Trans., 2004, 45: 3028
[286]
Gü?lü F M, ?imeno?lu H. The recrystallization behaviour of CP-titanium [J]. Mater. Sci. Forum, 2004, 467-470: 459
[287]
Schwab H, Prashanth K G, L?ber L, et al.Selective laser melting of Ti-45Nb alloy[J]. Metals, 2015, 5: 686
[288]
Kobryn P A, Moore E H, Semiatin S L.The effect of laser power and traverse speed on microstructure, porosity, and build height in laser-deposited Ti-6Al-4V[J]. Scr. Mater., 2000, 43: 299
[289]
Kobryn P A, Semiatin S L.The laser additive manufacture of Ti-6Al-4V[J]. JOM, 2001, 53(9): 40
[290]
Liu C M, Tian X J, Tang H B, et al.Microstructural characterization of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. J. Alloys Compd., 2013, 572: 17
[291]
Blackwell P L, Wisbey A.Laser-aided manufacturing technologies; their application to the near-net shape forming of a high-strength titanium alloy[J]. J. Mater. Process. Technol., 2005, 170: 268
[292]
Liu C M, Wang H M, Tian X J, et al.Microstructure and tensile properties of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Mater. Sci. Eng., 2013, A586: 323
[293]
Kelly S M, Kampe S L.Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization[J]. Metall. Mater. Trans., 2004, 35A: 1861
[294]
Ravi G A, Qiu C L, Attallah M M.Microstructural control in a Ti-based alloy by changing laser processing mode and power during direct laser deposition[J]. Mater. Lett., 2016, 179: 104
[295]
Zhou Y G, Zeng W D, Yu H Q.An investigation of a new near-beta forging process for titanium alloys and its application in aviation components[J]. Mater. Sci. Eng., 2005, A393: 204
[296]
Zhu Y Y, Liu D, Tian X J, et al.Characterization of microstructure and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Mater. Des., 2014, 56: 445
[297]
Liu Z, Qin Z X, Liu F, et al.The microstructure and mechanical behaviors of the Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser melting deposition[J]. Mater. Charact., 2014, 97: 132
[298]
Lentz M, Risse M, Schaefer N, et al.Strength and ductility with {1011}-{1012} double twinning in a magnesium alloy[J]. Nat. Commun., 2016, 7: 11068
[299]
Nakai M, Niinomi M, Zhao X F, et al.Self-adjustment of Young's modulus in biomedical titanium alloys during orthopaedic operation[J]. Mater. Lett., 2011, 65: 688
[300]
Zhao X F, Niinomi M, Nakai M, et al.Optimization of Cr content of metastable β-type Ti-Cr alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomater., 2012, 8: 2392
[301]
Zhao X L, Niinomi M, Nakai M, et al.Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomater., 2011, 7: 3230
[302]
Zhao X F, Niinomi M, Nakai M, et al.Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomater., 2012, 8: 1990
[303]
Li Q, Niinomi M, Hieda J, et al.Deformation-induced omega phase in modified Ti-29Nb-13Ta-4.6Zr alloy by Cr addition[J]. Acta Biomater., 2013, 9: 8027
[304]
Hong I T, Koo C H.Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel[J]. Mater. Sci. Eng., 2005, A393: 213
[305]
Zheng Y F, Zhang B B, Wang B L, et al.Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag[J]. Acta Biomater., 2011, 7: 2758
[306]
Zhang E L, Li F B, Wang H Y, et al.A new antibacterial titanium-copper sintered alloy: Preparation and antibacterial property[J]. Mater. Sci. Eng., 2013, C33: 4280
[307]
Tie D, Feyerabend F, Müller W D, et al.Antibacterial biodegradable Mg-Ag alloys[J]. Eur. Cell. Mater., 2013, 25: 284
[308]
Chai H W, Guo L, Wang X T, et al.Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo[J]. J. Mater. Sci. Mater. Med., 2011, 22: 2525
[309]
Ren L, Yang K, Guo L, et al.Preliminary study of anti-infective function of a copper-bearing stainless steel[J]. Mater. Sci. Eng., 2012, C32: 1204
[310]
Li Y, Liu L N, Wan P, et al.Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations[J]. Biomaterials, 2016, 106: 250
[311]
Lock J Y, Wyatt E, Upadhyayula S, et al.Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications[J]. J. Biomed. Mater. Res., 2014, 102A: 781
[312]
Qin H, Zhao Y C, An Z Q, et al.Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy[J]. Biomaterials, 2015, 53: 211
[313]
He G P, Wu Y H, Zhang Y, et al.Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial properties[J]. J. Mater. Chem., 2015, 3B: 6676
[314]
Wu L L, Feyerabend F, Schilling A F, et al.Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture[J]. Acta Biomater., 2015, 27: 294
[315]
Zhang Y F, Xu J K, Ruan Y C, et al.Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nat Med., 2016, 22: 1160
[316]
Ren L, Xu L, Feng J W, et al.In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis[J]. J. Mater. Sci. Mater. Med., 2012, 23: 1235
[317]
Zhang Y, Ren L, Li M, et al.Preliminary study on cytotoxic effect of biodegradation of magnesium on cancer cells[J]. J. Mater. Sci. Technol., 2012, 28: 769
[318]
Wang Q, Jin S, Lin X, et al.Cytotoxic effects of biodegradation of pure Mg and MAO-Mg on tumor cells of MG63 and KB[J]. J. Mater. Sci. Technol., 2014, 30: 487
[319]
Wu Y, He G P, Zhang Y, et al.Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn[J]. Sci. Rep., 2016, 6: 21736
[320]
Chen Y M, Xiao M, Zhao H, et al.On the antitumor properties of biomedical magnesium metal[J]. J. Mater. Chem., 2015, 3B: 849
[321]
Ma N, Chen Y M, Yang B C.Magnesium metal——A potential biomaterial with antibone cancer properties[J]. J. Biomed. Mater. Res., 2014, 102A: 2644
[322]
Ogawa Y, Ando D, Sutou Y, et al.A lightweight shape-memory magnesium alloy[J]. Science, 2016, 353: 368
[323]
Wahl D A, Czernuszka J T.Collagen-hydroxyapatite composites for hard tissue repair[J]. Eur. Cell. Mater., 2006, 11: 43
[324]
Rezwan K, Chen Q Z, Blaker J J, et al.Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27: 3413
[325]
Wu Y H, Li N, Cheng Y, et al.In vitro study on biodegradable AZ31 magnesium alloy fibers reinforced PLGA composite[J]. J. Mater. Sci. Technol., 2013, 29: 545
[326]
Li X, Chu C L, Liu L, et al.Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires[J]. Biomaterials, 2015, 49: 135
[327]
Cifuentes S C, Gavilan R, Lieblich M, et al.In vitro degradation of biodegradable polylactic acid/magnesium composites: Relevance of Mg particle shape[J]. Acta Biomater., 2016, 32: 348
[328]
Lang X Y, Fu H Y, Hou C, et al.Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors[J]. Nat. Commun., 2013, 4: 2169
[329]
Hwang S W, Tao H, Kim D H, et al.A physically transient form of silicon electronics[J]. Science, 2012, 337: 1640
[330]
Lahann J, Mitragotri S, Tran T N, et al.A reversibly switching surface[J]. Science, 2003, 299: 371
[331]
Santini J T Jr, Cima M J, Langer R. A controlled-release microchip[J]. Nature, 1999, 397: 335
[332]
Boutry C M, Chandrahalim H, Streit P, et al.Characterization of miniaturized RLC resonators made of biodegradable materials for wireless implant applications[J]. Sensor. Actuat., 2013, 189A: 344
[333]
Boutry C M, Nguyen A, Lawal Q O, et al.A sensitive and biodegradable pressure sensor array for cardiovascular monitoring[J]. Adv. Mater., 2015, 27: 6954
[334]
Luo M D, Martinez A W, Song C, et al.A microfabricated wireless RF pressure sensor made completely of biodegradable materials[J]. J Microelectromech. Syst., 2014, 23: 4
[335]
Son D, Lee J, Lee D J, et al.Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases[J]. ACS Nano, 2015, 9: 5937